• Title/Summary/Keyword: new particle formation

Search Result 103, Processing Time 0.029 seconds

The Changes of the Hydrogenation Properties of Zr0.9Ti0.1Cr0.7Fe1.3 Alloy Upon the Pressure Induced Hydriding-Dehydriding Cycling (수소흡수-방출 사이클에 의한 Zr0.9Ti0.1Cr0.7Fe1.3 합금의 수소화 반응 특성의 변화)

  • Lee, Jon-Ha;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.29-37
    • /
    • 1990
  • The effect of pressure cycling of $Zr_{0.9}Ti_{0.1}Cr_{0.7}Fe_{1.3}$ on the hydrogenation properties was investigated using the P-C-Isotherm curves and hydrogen absorption rate curves in the isotherm condition. The reversible hydrogen absorption capacity was decreased about 45 % after 3300 cycles. In the case of activated sample, the rate controlling steps of hydriding reaction changed from the surface reaction to the hydrogen diffusion process through hydride phase sequentially as reaction proceeded. After 3300 cycles, the sequential change of rate controlling step was same as activated one. However, the hydrogen absorption rate significantly decreased. It is suggested that the degradation of $Zr_{0.9}Ti_{0.1}Cr_{0.7}Fe_{1.3}$ can be interpreted with the formation of $ZrFe_3$ phase at the particle surface.

  • PDF

Investigation of flow regime in debris bed formation behavior with nonspherical particles

  • Cheng, Songbai;Gong, Pengfeng;Wang, Shixian;Cui, Jinjiang;Qian, Yujia;Zhang, Ting;Jiang, Guangyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.43-53
    • /
    • 2018
  • It is important to clarify the characteristics of flow regimes underlying the debris bed formation behavior that might be encountered in core disruptive accidents of sodium-cooled fast reactors. Although in our previous publications, by applying dimensional analysis technique, an empirical model, with its reasonability confirmed over a variety of parametric conditions, has been successfully developed to predict the regime transition and final bed geometry formed, so far this model is restricted to predictions of debris mixtures composed of spherical particles. Focusing on this aspect, in this study a new series of experiments using nonspherical particles have been conducted. Based on the knowledge and data obtained, an extension scheme is suggested with the purpose of extending the base model to cover the particle-shape influence. Through detailed analyses and given our current range of experimental conditions, it is found that, by coupling the base model with this scheme, respectable agreement between experiments and model predictions for the regime transition can be achieved for both spherical and nonspherical particles. Knowledge and evidence from our work might be utilized for the future improvement of design of an in-vessel core catcher as well as the development and verification of sodium-cooled fast reactor severe accident analysis codes in China.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

The Study for Efficacy, Effect and Stabilization of Trichosanthes Kirilowii Root, Prunella Vulgaris Leaf and Clematis Chinensis Root as a New Whitening Ingredients (새로운 미백제인 천화분근, 하고초엽, 위령선근의 효능, 효과 및 안정화에 대한 연구)

  • 지홍근;최정식;이순근;조용백;표성수;한창균;김주현;정기원;윤세준
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.123-128
    • /
    • 2004
  • Numerous novel ingredients have been introduced for the higher functionality of whitening cosmetics. Through the preliminary research, we have found Trichosanthes kirilowii root, Prunella vulgaris leaf and Clematis chinensis root have high whitening efficacy. But they are insoluble. Moreover the discoloration of and decrease in content take place when they are exposed to light, heat or oxygen. From Trichosanthes kirilowii root, Prunella vulgaris leaf and Clematis chinensis root, efficacious ingredients were ethanol-extracted by heating to 75∼85$^{\circ}C$ for 6∼8 h. These extracts have the inhibitory activity of tyrosinase and B16 melanin formation, thus enhancing whitening effect. We made liposomes using propylene glycol (PG)/hydrogenated lecithin/middle chain triglycerides (MCT)/glycerin/water and microfuidizer to stabilize extracts. The stability against heat and light was enhanced by 3∼5 times compared with untreated extracts. Particle size analyzer, freeze fracture transmission electron microscopy (FF-TEM), chromameter and HPLC are used for the analysis.

Invention of Ultralow - n SiO2 Thin Films

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.281-281
    • /
    • 2010
  • Very low refractive index (<1.4) materials have been proved to be the key factor improving the performance of various optical components, such as reflectors, filters, photonic crystals, LEDs, and solar cell. Highly porous SiO2 are logically designed for ultralow refractive index materials because of the direct relation between porosity and index of refraction. Among them, ordered macroporous SiO2 is of potential material since their theoretically low refractive index ~1.10. However, in the conventional synthesis of ordered macroporous SiO2, the time required for the crystallization of organic nanoparticles, such as polystyrene (PS), from colloidal solution into well ordered template is typical long (several days for 1 cm substrate) due to the low interaction between particles and particle - substrate. In this study, polystyrene - polyacrylic acid (PS-AA) nanoparticles synthesized by miniemulsion polymerization method have hydrophilic polyacrylic acid tails on the surface of particles which increase the interaction between particle and with substrate giving rise to the formation of PS-AA film by simply spin - coating method. Less ordered with controlled thickness films of PS-AA on silicon wafer were successfully fabricated by changing the spinning speed or concentration of colloidal solution, as confirmed by FE-SEM. Based on these template films, a series of macroporous SiO2 films whose thicknesses varied from 300nm to ~1000nm were fabricated either by conventional sol - gel infiltration or gas phase deposition followed by thermal removal of organic template. Formations of SiO2 films consist of interconnected air balls with size ~100 nm were confirmed by FE-SEM and TEM. These highly porous SiO2 show very low refractive indices (<1.18) over a wide range of wavelength (from 200 to 1000nm) as shown by SE measurement. Refraction indices of SiO2 films at 633nm reported here are of ~1.10 which, to our best knowledge, are among the lowest values having been announced.

  • PDF

New Technologies for Enhancing Particles Separation Efficiency in Coagulation and Filtration (입자분리효율을 높이기 위한 새로운 기술)

  • Kunio, Ebie;Jang, Il-Hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.254-269
    • /
    • 2004
  • Polysilicato-iron coagulant (PSI) is receiving attention in Japan as a substitute for aluminum-based coagulants. In the first part of this article, coagulation, sedimentation and filtration experiments were carried out using kaolin clay particles as the turbidizing material and four types of PSI with various molar ratios of polysilicic acid to ferric chloride (Si/Fe ratio). Results demonstrate that use of a PSI with a high Si/Fe ratio can cause a more dramatic decrease in treated water turbidity but a higher suction time ratio (STR) than when PACl is used. However, optimization by increasing the rapid agitation strength GR is found to greatly improve the STR. In addition, the series of filtration experiments verified that optimization of GR is greatly effective in controlling rapid increases in filter head loss, and also formation of a thin aging layer in the upper part of the filter bed by slow-start filtration is effective in improving filtered water turbidity over the entire filtration process. The second part of this article describes two innovative filtration techniques to increase the particle separation efficiency; (1) coagulant-coated filter medium by enhancing the electrical potential of the surface of the filter medium, and (2) coagulant dosing in influent by controlling the electrical potential of particles entering the filter layer. From the results of the various filtration experiments using a pilot plant, these two techniques were found to be very effective to reduce the effluent water turbidity from the start to the end of a filter run. Moreover, in the filtration experiments using these two methods simultaneously, higher removal efficiency of approximately 3-log (99.7%) was realized, resulting that the finished water turbidity was accordingly reduced to 0.004mg/L.

A cost-effective method to prepare size-controlled nanoscale zero-valent iron for nitrate reduction

  • Ruiz-Torres, Claudio Adrian;Araujo-Martinez, Rene Fernando;Martinez-Castanon, Gabriel Alejandro;Morales-Sanchez, J. Elpidio;Lee, Tae-Jin;Shin, Hyun-Sang;Hwang, Yuhoon;Hurtado-Macias, Abel;Ruiz, Facundo
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.463-473
    • /
    • 2019
  • Nanoscale zero-valent iron (nZVI) has proved to be an effective tool in applied environmental nanotechnology, where the decreased particle diameter provides a drastic change in the properties and efficiency of nanomaterials used in water purification. However, the agglomeration and colloidal instability represent a problematic and a remarkable reduction in nZVI reactivity. In view of that, this study reports a simple and cost-effective new strategy for ultra-small (< 7.5%) distributed functionalized nZVI-EG (1-9 nm), with high colloidal stability and reduction capacity. These were obtained without inert conditions, using a simple, economical synthesis methodology employing two stabilization mechanisms based on the use of non-aqueous solvent (methanol) and ethylene glycol (EG) as a stabilizer. The information from UV-Vis absorption spectroscopy and Fourier transform infrared spectroscopy suggests iron ion coordination by interaction with methanol molecules. Subsequently, after nZVI formation, particle-surface modification occurs by the addition of the EG. Size distribution analysis shows an average diameter of 4.23 nm and the predominance (> 90%) of particles with sizes < 6.10 nm. Evaluation of the stability of functionalized nZVI by sedimentation test and a dynamic light-scattering technique, demonstrated very high colloidal stability. The ultra-small particles displayed a rapid and high nitrate removal capacity from water.

How Supernovae Ejecta Is Transported In A Galaxy: DependenceOn Hydrodynamic Schemes In Numerical Simulations

  • Shin, Eun-jin;Kim, Ji-hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • We studied the metal-distribution of isolated Milky-way mass galaxy using various hydrodynamic solvers and investigated the difference of the result between AMR and SPH codes. In particle-based codes, physical quantities like mass or metallicity defined in each particle are conserved unless being injected explicitly by the effect of the supernova, whereas in the Eulerian codes the diffusion is simply accomplished by hydro-equation. Therefore, without including explicit physics of diffusion on the SPH- codes, the metal mixing in the galaxy or CGM only can be accomplished by the direct motion of the particles, however, the standard-SPH codes depress the instability of the turbulent fluid mixing. In this work, we simulated under common initial conditions, common gas-physics like cooling-heating models, and star-formation feedback using ENZO(AMR) GIZMO and GADGET-2 codes. We additionally included a metal-diffusion algorithm on the SPH-codes, which follows the subgrid-turbulent mixing model investigated by Shen et al. (2010) and compared the effect of the metal-outflow on the halo region of the galaxy in different hydro-solvers. We also found that for the implementation of the diffusion scheme in the SPH-codes, the existence of a sufficient number of the gas-particles, which is the carrier of the metals, is necessary. So we tested a new initial condition for proper implementation of the diffusion scheme on the SPH simulations. By comparing the metal-contamination of the circumgalactic medium with different hydrodynamics models, we quantify the diffusion strength of AMR codes using diffusion parameterization of the SPH codes and also suggest the calibration solutions in the different behavior of codes in metal-outflow.

  • PDF

Maxillary Sinus Augmentation Using Macroporous Biphasic Calcium Phosphate ($MBCP^{TM}$) : Three Case Report With Histologic Evaluation (합성골 이식재인 Macroporous biphasic calcium phosphate를 이용한 사람의 상악동 거상술-증례 보고)

  • Lee, Ji-Hyun;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.567-577
    • /
    • 2006
  • Background Several bone grafting materials have been used in sinus augmentation procedures. Macroporous Biphasic Calcium Phosphate($MBCP^{TM}$) consists of the mixture of 60% HA and 40% ${\beta}-TCP$. Therefore, it can provide good scaffold for the new bone to grow owing to HA, in the other hand, it can have bioactivity for bone remodeling owing to ${\beta}-TCP$. The purpose of this study was to evaluate bone formation following maxillary sinus augmentation using $MBCP^{TM}$ by means of histologic analysis. Material and Method $MBCP^{TM}$ was placed as a primary bone substitute for maxillary sinus augmentation. Three patients were selected after evalaution of their medical dental examination. $MBCP^{TM}$ only, $MBCP^{TM}$ combined with Irradicated cancellous bone and $MBCP^{TM}$ combined with autogenous bone were used for each patient. After about eight months, bone biopsies were harvested for histologic evaluation and fixtures installed. Results Eight months after surgery we observed new vital bone surrounding $MBCP^{TM}$ particle and the amount of new bone was about 30% even though there were discrepancies between specimens. This case report documents that $MBCP^{TM}$ when used as a grafting material for sinus floor augmentation whether combined other bone graft material or not, may lead to the predictable results for dental implants on posterior maxillary area with insufficient vertical height for fixture installation.

Quantitative Measurement of Soot concentration by Two-Wavelength Correction of Laser-Induced Incandescence Signals (2파장 보정 Laser-Induced Incandescence 법을 이용한 매연 농도 측정)

  • 정종수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.54-65
    • /
    • 1997
  • To quantify the LII signals from soot particle of flames in diesel engine cylinder, a new method has been proposed for correcting LII signal attenuated by soot particles between the measuring point and the detector. It has been verified by an experiment on a laminar jet ethylene-air diffusion flame. Being proportional to the attenuation, the ratio of LII signal at two different detection wavelengths can be used to correct the measured LIIsignal and obtain the unattenuated LII signal, from which the soot volume fraction in the flame can be estimated. Both the 1064-nm and frequency-doubled 532-nm beams from the Nd : YAG laser are used. Single-shot, one-dimensional(1-D) line images are recorded on the intensified CCD camera, with the rectangular-profile laser beam using 1-mm-diameter pinhole. Two broadband optical interference filters having the center wavelengths of 647 nm and 400 nm respectively and a bandwidth of 10 nm are used. This two-wavelength correction has been applied to the ethylene-air coannular laminar diffusion flame, previously studied on soot formation by the laser extinction method in this laboratory. The results by the LII measurement technique and the conventional laser extinction method at the height of 40 nm above the jet exit agreed well with each other except around outside of the peaks of soot concentration, where the soot concentration was relatively high and resulting attenuation of the LII signal was large. The radial profile shape of soot concentration was not changed a lot, but the absolute value of the soot volume fraction around outside edge changed from 4ppm to 6.5 ppm at r=2.8mm after correction. This means that the attenuation of LII signal was approximately 40% at this point, which is higher than the average attenuation rate of this flame, 10~15%.

  • PDF