• Title/Summary/Keyword: new effective temperature

Search Result 455, Processing Time 0.031 seconds

Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating (Vanadium-Boride코팅의 고온 내입자침식성 평가)

  • Lee, E.Y.;Kim, J.H.;Jeong, S.I.;Lee, S.H.;Eum, G.W.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-84
    • /
    • 2015
  • The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600~2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipments were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

Design and Fabrication of Ballast Water Treatment System using Fuzzy PID Controller (퍼지 PID 제어 기법을 이용한 선박평형수 처리 시스템 설계 및 제작)

  • Lee, Young-Dong;Ahn, Byeong-Gu;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.3
    • /
    • pp.108-114
    • /
    • 2015
  • Ballast water is carried by ships to ensure stability, trim and structural integrity. When a ship loads cargo, the ballast water is discharged. When foreign marine microorganisms are introduced into new marine environments, they pose a threat to the local marine ecological system. UV system is commonly used for the disinfection of waste and surface water. This method would not be as efficient because some species do survive to form viable populations, much of the sediment and organisms at the bottom of tanks, and may become serious pests. In this paper, we designed and implemented ballast water treatment system using fuzzy PID controller to prevent lamp damage, and to reduce the formation of the viable populations. The experiments were conducted with ballast water treatment system using fuzzy PID controller with short time exposure to the temperature above $40^{\circ}C$. This system was shown to be effective by significantly reducing bacterial population and lamp life extension through appropriate temperature of ballast water.

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation

  • Rajkumar, Renganathan;Ranishree, Jayappriyan Kothilmozhian;Ramasamy, Rengasamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.627-636
    • /
    • 2011
  • A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

KIER Liquefaction R & D's status (KIER 액화 기술 개발 현황)

  • Yang, Jung-Il;Yang, Jung Hoon;Lee, Ho-Tae;Chun, Dong Hyun;Kim, Hak-Joo;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.110.1-110.1
    • /
    • 2010
  • A bench scale slurry bubble column reactor (SBCR) with active-Fe based catalyst was developed for the Fischer-Tropsch synthesis (FTS) reaction. Considering the highly exothermic reaction heat generated in the bench scale SBCR, an effective cooling system was devised consisting of a U-type dip tube submerged in the reactor. Also, the physical and chemical properties of the catalyst were controlled so as to achieve high activity for the CO conversion and liquid oil ($C_{5+}$) production. Firstly, the FTS performance of the FeCuK/$SiO_2$ catalyst in the SBCR under reaction conditions of $265^{\circ}C$, 2.5 MPa, and $H_2/CO=1$ was investigated. The CO conversion and liquid oil ($C_{5+}$) productivity in the reaction were 88.6% and 0.226 $g/g_{cat}-h$, respectively, corresponding to a liquid oil ($C_{5+}$) production rate of 0.03 bbl/day. To investigate the FTS reaction behavior in the bench scale SBCR, the effects of the space velocity and superficial velocity of the synthesis gas and reaction temperature were also studied. The liquid oil production rate increased upto 0.057 bbl/day with increasing space velocity from 2.61 to 3.92 $SL/h-g_{Fe}$ and it was confirmed that the SBCR bench system developed in this research precisely simulated the FTS reaction behavior reported in the small scale slurry reactor.

  • PDF

Statistical approach to obtain the process optimization of texturing for mono crystalline silicon solar cell: using robust design (단결정 실리콘 태양전지의 통계적 접근 방법을 이용한 texturing 공정 최적화)

  • Kim, Bumho;Kim, Hoechang;Nam, Donghun;Cho, Younghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.47.2-47.2
    • /
    • 2010
  • For reducing outer reflection in mono-crystalline silicon solar cell, wet texturing process has been adapted for long period of time. Nowadays mixed solution with potassium hydroxide and isopropyl alcohol is used in silicon surface texturing by most manufacturers. In the process of silicon texturing, etch rate is very critical for effective texturing. Several parameters influence the result of texturing. Most of all, temperature, process time and concentration of potassium hydroxide can be classified as important factors. In this paper, temperature, process time and concentration of potassium hydroxide were set as major parameters and 3-level test matrix was created by using robust design for the optimized condition. The process optimization in terms of lowest reflection and stable etch rate can be traced by using robust design method.

  • PDF

The Effective Control of Hot Weather Concreting by Optimum Mineral and Chemical Admixtures (혼화재 및 혼화제의 조절에 의한 서중 콘크리트의 효과적 관리)

  • Lee, Dongyule;Ham, Suyun;Oh, Taekeun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.59-66
    • /
    • 2015
  • The undesirable effects of elevated external temperatures at placement on the properties of the fresh and hardened concrete are discussed briefly, and the possible use of the mineral admixtures to mitigate them and the association with water-reducing and retarding admixtures in terms of the mix design which are critical for minimizing slump loss and entrained air loss are examined in this study. To investigate the effects of such the mineral and chemical admixtures on the fresh and hardened properties of concrete exposed to high temperature, a series of concrete mixtures subjected to the high temperature were carried out and then fresh and hardened properties of the mixtures were analyzed and evaluated. Based on the results, new guide lines concerning the appropriate admixtures for hot weather are suggested.

Morphological study of $SF_6$ clathrate hydrate crystal ($SF_6$ 하이드레이트 결정 성장의 특성)

  • Lee, Yoon-Seok;Lee, Hyun-Ju;Lee, Eun-Kyung;Kim, Soo-Min;Lee, Ju-Dong;Kim, Yang-Do
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.711-711
    • /
    • 2009
  • Global warming has been widely recognized as a serious problem threatening the future of human beings. It is caused by the buildup in the atmosphere of greenhouse gases, such as carbon dioxide, methane, hydrofluorocarbons (HFCs), and sulfur hexafluoride (SF6). Particularly, SF6 has extremely high global warming potential compare to those of other global warming gases. One option for mitigating this greenhouse gas is the development of an effective process for capturing and separating these gases from anthropogenic sources. In general, gas hydrates can be formed under high pressure and low temperature. However, SF6 gas is known to form hydrate under relatively milder conditions. Therefore, technological and economical effects could be expected for the separation of SF6 gas from waste gas mixtures. In this study, we carried out morphological study for the SF6 hydrate crystals to understand its formation and growth mechanisms. The observations were made in high-pressure optical cell charged with liquid water and SF6 gas at constant pressure and temperature. Initially SF6 hydrate formed at the surface between gas and liquid regions, and then subsequent dendrite crystals grew at the wall above the gas/water interface. The visual observations of crystal nucleation, migration, growth and interference were reported. The detailed growth characteristics of SF6 hydrate crystals were discussed in this study.

  • PDF

The Effects of Acupuncture Treatment on the Autonomic Nervous Systems of Hwa-byung Patients' Insomnia (화병환자의 불면증 침치료가 인체의 자율신경계에 미치는 영향)

  • Bae, Dal-Bit;Lyu, So-Jung;Lee, Go-Eun;Lee, Seung-Jae;Kang, Hyung-Won;Lyu, Yeoung-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.25 no.3
    • /
    • pp.235-242
    • /
    • 2014
  • Objectives: The purpose of this research is to examine effects of acupuncture treatment on the autonomic nervous systems of Hwa-byung patients with insomnia. Methods: The study was performed through a patient-assessor blind, randomized, placebo-controlled trial in which the volunteers, data collectors, and analysts were unaware of which individuals were receiving the treatment. A total of thirty-seven volunteers were divided into 2 groups. Eighteen subjects were placed into a trial group and 19 subjects into a control group using a randomization table. The trial group was treated with bilateral Shigu, Ahnmyun, B62 (Shinmaek), and K6 (Chohae), while the control group was not given any other treatment. The ISI (Insomnia Severity Scale) was measured as the first evaluative instrument, and then a comparative analysis was conducted by comparing the results with those measured by ANS (BVP/HR, respiration rate, peripheral temperature, skin conductance, EMG). Results: In the BVP/HR, statistically significant decreases were found in those from the trial group compared to those of the control group. Skin conductance was found to be significantly increased in the trial group, as compared to the control group. However, there were no significant differences between the groups with respect to peripheral temperature, respiration rate, and EMG. Conclusions: The results suggest that acupuncture treatment is effective in the treatment of hwa-byung patients who suffer from insomnia due to their autonomic nervous systems.

Effect of Delayed Inoculation After Wounding on the Development of Anthracnose Disease Caused by Colletotrichum acutatum on Chili Pepper Fruit

  • Kim, Sang-Gyu;Kim, Yn-Hee;Kim, Heung-Tae;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.392-399
    • /
    • 2008
  • Detached chili pepper fruits were inoculated with the conidial suspension of Colletotrichum acutatum JC-24 simultaneously (simultaneous inoculation, SI) and at delayed time (delayed inoculation, DI) after wounding with (delayed wound inoculation, DWI) or without additional wounding (delayed non-wound inoculation, DNI) at the inoculation time. Disease severity was significantly lowered by DNI, compared to SI. By DNI, the disease reduction rates were proportional with the length of delayed time, and greater at the high temperature range (18, 23 and $28^{\circ}$) than at the low temperature ($13^{\circ}$) tested. DWI was also effective in reducing the disease severity especially at 18oC; however, its effectiveness was lower than for DNI. In light microscopy, parenchyma cells at the wounding sites were modified structurally, initially forming new cell walls crossing cytoplasm, enlarged with multiple periclinal cell divisions, and finally layered like wound periderms. In DWI, the above structural modifications occurred, showing the restriction of the fungal invasion by the cell walls in enlarged modified cells, while no definite cellular modifications were found with proliferation of fungal hyphae in SI. Sclerenchyma-like cells with thickened cell walls were proliferated around the wounding sites, which were partially dissolved by DWI, probably leading to some disease development. All of these results suggest that the decline of the anthracnose disease in pepper fruit by the delayed inoculations may be derived from the structural modifications related to the healing processes of the previous wound inflicted on the tissues.

Comparative Toxicities of Selected Acaricides against the Twospotted Spider Mite(Tetranychus urticae Koch) to Establish the Screeing System for New Acaricidal Chemical Compounds (스크리닝체제 확립을 위한 점박이응애에 대한 몇가지 살비제의 약효 비교)

  • 조점래;최용호;박노중;조광연
    • Korean journal of applied entomology
    • /
    • v.32 no.2
    • /
    • pp.123-128
    • /
    • 1993
  • The comparative toxicities of selected acaricides against the twospotted spider mite, Tetranychus urticae, were investigated. The ovicidal and adulticidal activities of selected acaricides were examined under different developmental stages. Fenpyroximate showed high activity throughout all developmental stages of mites. The oviposition inhibition effect of fenpyroximate was more highly effective than that of cyhexatin. At 100 ppm concentration, the effect of fenpyroximate on the residual oviposition inhibition was persistant during 25 days with 85% level, while the effect of cyhexatin gradually decreased, and then decreased to 40% at 25 days after treatment. Fenpyroximate at 100 ppm showed 100% knockdown activity within 3 hour while cyhexatin showed only 91% knockdown activity within 24 hours after treatment. Most of selected acaricides had no systemic activity, but metasystox at 800 ppm had 100% of the systemic activity at 24 hours after treatment. For the influence of temperature on the activity, fenpyroximate showed stable activity and no temperature-dependent in comparison with other selected adaricides.

  • PDF