• Title/Summary/Keyword: new construction material

Search Result 670, Processing Time 0.031 seconds

Effect of curing on alkalinity and strength of cement-mortar incorporating palm oil fuel ash

  • Payam Shafigh;Sumra Yousuf;Belal Alsubari;Zainah Ibrahim
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.191-202
    • /
    • 2023
  • Palm oil fuel ash (POFA) is a newly emerging pozzolanic material having high amount of silica content. Various forms of POFA were used in cement-based materials (CBMs) in replacement of cement in different dosages of low and high volume. Although, there are many researches on POFA to be used in concrete and mortar, however, this material was not practically used in the construction industry. Engineers and designers need to be confident to use any new developed materials by knowing all engineering properties at short and long terms. As durability concern, concrete pH value is one of the most important properties. Portland cement produces are alkaline initially, however, it may be reduced due to aging and its components. It is believed that by incorporation of supplementary cementitious materials in CBMs the pH value reduces due to utilization of Ca(OH)2 in pozzolanic reaction. This study is the first attempts to understand the pH value of mortars containing up to 30% POFA under different curing conditions and its changes with time. The results were also compared with the pH of ground granulated ballast furnace slag (GGBFS) and fly ash (FA) content mortars. In addition, the compressive strength of different mortars under different curing conditions were also studied. The results showed that the pH value of control mix (without cementitious materials) was more than all the blended cement mortars indifferent curing conditions at the same ages. However, there was a reducing trend in the pH value of all mortar mixes containing POFA.

The Evolution of Outrigger System in Tall Buildings

  • Ho, Goman W.M.
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 2016
  • The structural efficiency of tall buildings heavily depends on the lateral stiffness and resistance capacity. Among those structural systems for tall buildings, outrigger system is one of the most common and efficient systems especially for those with relatively regular floor plan. The use of outriggers in building structures can be traced back from early 50 from the concept of deep beams. With the rise of building height, deep beams become concrete walls or now in a form of at least one story high steel truss type of outriggers. Because of the widened choice in material to be adopted in outriggers, the form and even the objective of using outrigger system is also changing. In the past, outrigger systems is only used to provide additional stiffness to reduce drift and deflection. New applications for outrigger systems now move to provide additional damping to reduce wind load and acceleration, and also could be used as structural fuse to protect the building under a severe earthquake condition. Besides analysis and member design, construction issue of outrigger systems is somehow cannot be separated. Axial shortening effect between core and perimeter structure is unavoidable. This paper presents a state-of-the-art review on the outrigger system in tall buildings including development history and applications of outrigger systems in tall buildings. The concept of outrigger system, optimum topology, and design and construction consideration will also be discussed and presented.

A Study on the Estimating Rate of Safety Management Cost in Building Work (건축공사 안전관리비 비율 산정 모형에 관한 연구)

  • Son, Ki-Sang;Gal, Won-Mo;Yang, Hak-Su
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.33-40
    • /
    • 2007
  • Standard safety management costs can not be applied to each site with same rate, it is very difficult, because it depends on the experience, work method, work kind, work progress schedule, and hazard level of each construction company. Therefore, this study is to find out hazard level of each work kinds through questionnaire and interview and investigate analyze the status which standard safety management costs have been used. Also, this study is to show reasonable rates of standard safety management costs in construction industry and to set up countermeasures against those problem after reviewing its status in korea with in Japan and Europe. This study is to investigate eleven project kinds of domestic system, first, and to investigate eleven items of apartment bldg, office. Also this study is to investigate and analyze performed costs of presently processing worker finished work so that it shows a new reasonable rate against standard safety management costs in construction industry, in order to make basical data and material to be systemized.

A Study on Use and improvement of Construction type infiltration gallery (조립식 집수암거의 개량과 이용에 관한 연구)

  • 함준호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.2
    • /
    • pp.2593-2602
    • /
    • 1972
  • Plastic pipes Wrapped with synthetic filter are recently used for drainage or Collecting of Underground water. But it's use is possible only for small size of diameter less than 300mm, because large size plastic pipes are not readily availabe. For large diameter infiltration gallery, porous concrete pipes are now used, but it's heavy weight brings difficulties in making, moving and setting of the pipes. With it's conventional method of filter setting, fine sands are brought into the pipes to make trouble to lifting pumps and channels Therefore, initial construction cost and maintenance cost become high. To solve-this problem, new method is developed and tested. Small PVC pipes(diameter 14mm) are assembled at the site of construction to newly devised I beam type circls. The size of circular inpiltration gallery is optionally determined by I beam type circle which support small PVC pipes and is made of PVC amterial. This gallery are wrappd with syntheitc filter to prevent sand instruction. In this test, the diameter of 300, 400, 500mm were used. I beam type circles were made with PVC plated with thickness. t=6, 9, 12mm. Water quantity collected through the PVC circulor gallery are measured and the strengths of the gallery. 1. Allowable setting depth of gallery pipe below graund for the case of t=6mm, D=500mm is 2.72m. 2. Collected water quantity depends on soil texture, depth of water grandient of water surface, filter material angle of setting etc. 3. About 126% of water quantity collected from the one gallery pipe measured in two gallery pipes of two parallel installation.

  • PDF

A Construction Case of Massive Foundation for High Rise Building (A Case of Barrette Pile) (초고층 건축물 대형기초의 시공 사례 (바레트 말뚝 중심))

  • Joeng, Gyong-Hwan;Jung, Dong-Young;Moon, Jun-Bai;Kim, Dong-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.90-104
    • /
    • 2007
  • The trend of current urban redevelopment and new city development project shows that the superstructure of building is getting larger and higher in consequence of a limited plottage condition and the preference of landmark. For this reason, it is definitely required to extend pile diameter and install the pilein deep foundation to support superstructure. The pile method causes construction-related problems such as increasing quantities, difficulty of storage & transportation material and decreasing design load while construct pile in deep foundation. The Bored Pile method has applied to minimize those problems. As above shown, this article will be presented construction case study of Barrette Pile and R.C.D in order to make a counterproposal for the quality control of a large building foundation work.

  • PDF

Developing an Integrated Evaluation Technology for Energy- and Cost-Efficient Building Design Based on BIM in the Real-time Manner

  • Park, Jae Wan;Lee, Yun Gil
    • Architectural research
    • /
    • v.16 no.3
    • /
    • pp.93-100
    • /
    • 2014
  • Existing BIM(Building Information Modeling) based energy evaluation tools cannot be utilized enough for the potential performance of BIM because most of them have not provided the integrated model for energy evaluation, assessment of the material, cost of the construction, and so on. This research aims to propose and develop a new application, EcoBIM, to support an integrated evaluation of the energy and cost efficiencies of the design alternatives within the design process. The proposed application functions as a BIM-based evaluation system that calculates energy-savings performance as well as the construction cost of the alternatives at the design stage. This study mainly focuses on the possibilities of developing the proposed technology. We also suggest an advanced design process using the proposed system, corresponding to changes of national regulations in Korea. This study deduce that EcoBIM can allow architects to make suitable decisions regarding energy- and cost-efficient designs. The proposed design process will allow architects not only to check the eco-friendly performance of design alternatives but also predict the operation cost in a certain period in the future. EcoBIM can prevent large-scale design changes required to obtain environmental certification and enable the owner to make an informed decision about the initial investment of construction according to the result of the analysis of the energy requirement at the design stage.

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

A study of Monolithic Design and Contemporary Architecture Space Constitution (모놀리틱디자인과 현대건축공간구성에 관한 연구)

  • Kim, Jun-Ho;Lee, Jung-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.1
    • /
    • pp.3-12
    • /
    • 2017
  • In today's society, Monolithic expresses itself as a single featured work with a consistent exterior in the urban environment. In particular, such characteristics of the monolithic work have become increasingly influential in the modern society with the emergence of the minimalism. Monolithic architecture in modern has common feature which is maintaining simple construction format (Mass) with complicated and abundance space (Volume) inside. This simple architecture exterior leads new stimulus which is different from previous format and evokes unique sensibility and thoughts with monumental expressing. Uniformed exterior revealed thru purity of material builds up strong presence by itself. In contract with simple exterior, diverse space is expressed by consistent concept and process. Through this, it shows creating metaphorical space and space-oriented feature. We can interpret modern monolithic architecture as a sensation and alternative against Gestalt architecture in consequence of chasing clarity, visual stimulus and uncertain tendency only. It provides architectural experience by spatial imaginary and unexpected space development to users through exclusivetendency against outside and stressing un-private, we can evaluate its value as a space-oriented construction which helped us to think about space meaning in modern society.

The Use of Bituminous Subballast on Future High-Speed Lines in Spain: Structural Design and Economical Impact

  • Teixeira, P.F.;Ferreira, P.A.;Pita, A. Lopez;Casas, C.;Bachiller, A.
    • International Journal of Railway
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • The development of structural solutions for high-speed or very high-speed tracks that minimize total life cycle costs of the system is a key issue to improve the operational profitability of new investments. In opposition to conventional ballasted tracks, slab track solutions can be a cost-effective solution, but only in the cases where the benefits due to the increase in track availability and the reduction of track maintenance offsets its much higher construction costs. In the cases where such investment is not feasible, it is worth to evaluate possible structural improvements to ballasted track that allow reducing its maintenance needs without increasing too much its construction costs. This paper evaluates the design requirements and the impact of improving conventional high-speed ballasted tracks by using a bituminous subballast layer. It is divided into two main parts: first the design requirements of the structural solutions with bituminous subballast and its possible benefits on high-speed track deterioration, and secondly the evaluation of the economic impact, in terms of construction costs, of using this structural solution material in future Spanish high-speed lines.

  • PDF

Constructional Verification Evaluation for Securing the Field Quality of Composite Membrane Waterproofing Material (멤브레인 복합 방수재의 현장품질 안정성 확보를 위한 시공성 실증 평가 연구)

  • Kim, Meong-Ji;Lee, Sang-Wook;Kim, Soo-Yeon;Oh, Sang-Keun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, seven companies(A~G) designated as new construction technology selected and evaluated KS F 2622: Method of test for performance evaluation of membrane roofing systems that are similar to field application conditions. As a result of the test, it was confirmed that although all test specimens exceeded KS standards in the basic physical, it was difficult to obtain field quality performance in weak areas such as joints and vertical parts of the adhesive coating method in water-tightness, sagging resistance, swelling resistance tests except for fatigue(crack behavior) tests.