• Title/Summary/Keyword: new activation function

Search Result 157, Processing Time 0.026 seconds

Improvement of learning method in pattern classification (패턴분류에서 학습방법 개선)

  • Kim, Myung-Chan;Choi, Chong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.594-601
    • /
    • 1997
  • A new algorithm is proposed for training the multilayer perceptrion(MLP) in pattern classification problems to accelerate the learning speed. It is shown that the sigmoid activation function of the output node can have deterimental effect on the performance of learning. To overcome this detrimental effect and to use the information fully in supervised learning, an objective function for binary modes is proposed. This objective function is composed with two new output activation functions which are selectively used depending on desired values of training patterns. The effect of the objective function is analyzed and a training algorithm is proposed based on this. Its performance is tested in several examples. Simulation results show that the performance of the proposed method is better than that of the conventional error back propagation (EBP) method.

  • PDF

A New Fuzzy Supervised Learning Algorithm

  • Kim, Kwang-Baek;Yuk, Chang-Keun;Cha, Eui-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.399-403
    • /
    • 1998
  • In this paper, we proposed a new fuzzy supervised learning algorithm. We construct, and train, a new type fuzzy neural net to model the linear activation function. Properties of our fuzzy neural net include : (1) a proposed linear activation function ; and (2) a modified delta rule for learning algorithm. We applied this proposed learning algorithm to exclusive OR,3 bit parity using benchmark in neural network and pattern recognition problems, a kind of image recognition.

  • PDF

Neural adaptive equalization of M-ary QAM signals using a new activation function with a multi-saturated output region (새로운 다단계 복소 활성 함수를 이용한 신경회로망에 의한 M-ary QAM 신호의 적응 등화)

  • 유철우;홍대식
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.42-54
    • /
    • 1998
  • For decreasing intersymbol interference (ISI) due to band-limited channels in digitalcommunication, the uses of equalization techniques are necessary. Among the useful adaptive equalization techniques, because of their ease of implementation and nonlinear capabilites, the neural networks have been used as an alternative for effectively dealing with the channel distortion. In this paepr, a complex-valued multilayer percepron is proposed as a nonlinear adaptive equalizer. After the important properties that a suitable complex-valued activation function must possess are discussed, a new complex-valued activation function is developed for the proposed schemes to deal with M-ary QAM signals of any constellation sizes. It has been further proven that by the nonlinear transformation of the proposed function, the correlation coefficient between the real and imaginary parts of input data decreases when they are jointly Gaussian random variables. Lastly, the effectiveness of the proposed scheme is demonstrated by simulations. The proposed scheme provides, compared with the linear equalizer using the least mean squares (LMS) algorith, an interesting improvement concerning Bit Error Rate (BER) when channel distortions are nonlinear.

  • PDF

An Improvement of Performance for Cascade Correlation Learning Algorithm using a Cosine Modulated Gaussian Activation Function (코사인 모듈화 된 가우스 활성화 함수를 사용한 캐스케이드 코릴레이션 학습 알고리즘의 성능 향상)

  • Lee, Sang-Wha;Song, Hae-Sang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.107-115
    • /
    • 2006
  • This paper presents a new class of activation functions for Cascade Correlation learning algorithm, which herein will be called CosGauss function. This function is a cosine modulated gaussian function. In contrast to the sigmoidal, hyperbolic tangent and gaussian functions, more ridges can be obtained by the CosGauss function. Because of the ridges, it is quickly convergent and improves a pattern recognition speed. Consequently it will be able to improve a learning capability. This function was tested with a Cascade Correlation Network on the two spirals problem and results are compared with those obtained with other activation functions.

  • PDF

Approximation of Polynomials and Step function for cosine modulated Gaussian Function in Neural Network Architecture (뉴로 네트워크에서 코사인 모듈화 된 가우스함수의 다항식과 계단함수의 근사)

  • Lee, Sang-Wha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.115-122
    • /
    • 2012
  • We present here a new class of activation functions for neural networks, which herein will be called CosGauss function. This function is a cosine-modulated gaussian function. In contrast to the sigmoidal-, hyperbolic tangent- and gaussian activation functions, more ridges can be obtained by the CosGauss function. It will be proven that this function can be used to aproximate polynomials and step functions. The CosGauss function was tested with a Cascade-Correlation-Network of the multilayer structure on the Tic-Tac-Toe game and iris plants problems, and results are compared with those obtained with other activation functions.

Improvement of Learning Capability with Combination of the Generalized Cascade Correlation and Generalized Recurrent Cascade Correlation Algorithms (일반화된 캐스케이드 코릴레이션 알고리즘과 일반화된 순환 캐스케이드 코릴레이션 알고리즘의 결합을 통한 학습 능력 향상)

  • Lee, Sang-Wha;Song, Hae-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • This paper presents a combination of the generalized Cascade Correlation and generalized Recurrent Cascade Correlation learning algorithms. The new network will be able to grow with vertical or horizontal direction and with recurrent or without recurrent units for the quick solution of the pattern classification problem. The proposed algorithm was tested learning capability with the sigmoidal activation function and hyperbolic tangent activation function on the contact lens and balance scale standard benchmark problems. And results are compared with those obtained with Cascade Correlation and Recurrent Cascade Correlation algorithms. By the learning the new network was composed with the minimal number of the created hidden units and shows quick learning speed. Consequently it will be able to improve a learning capability.

Application of a DAEM Method for a Comparison of Devolatilization Kinetics of Imported Coals (DAEM 분석 방법을 통한 국내 수입탄의 탈휘발화 반응특성 비교연구)

  • Kim, Ryang Gyoon;Song, Ju Hun;Lee, Byoung Hwa;Chang, Young June;Jeon, Chung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.110-115
    • /
    • 2010
  • The experiment was designed to compare pyrolysis kinetics of two different classes of imported coal. The pyrolysis behaviors of the coals were first observed with thermogravimetric analyzer(TGA). The kinetic analysis was further done based on a new distributed activation energy model(New DAEM). During the analysis, weight loss curves measured at three different heating rates were used to obtain the activation energy distribution function curve f(E) of a given coal sample where a mean activation energy is determined by its peak. The results show a significant difference in the mean activation energy between two coals for the pyrolytic reaction. The prediction of a chemical percolation devolatilization(CPD) model where the kinetics obtained from the New DAEM method were incorporated is in much closer agreement with an experimental data of TGA particularly for the bituminous coal.

Study of nonlinear hysteretic modelling and performance evaluation for piezoelectric actuators based on activation functions

  • Xingyang Xie;Yuguo Cui;Yang Yu
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.133-143
    • /
    • 2024
  • Piezoelectric (PZT) actuators have been widely used in precision positioning fields for their excellent displacement resolution. However, due to the inherent characteristics of piezoelectric actuators, hysteresis has been proven to greatly reduce positioning performance. In this paper, five mathematical hysteretic models based on activation function are proposed to characterize the nonlinear hysteresis characteristics of piezoelectric actuators. Then the performance of the proposed models is verified by particle swarm optimization (PSO) algorithm and the experiment data. Thirdly, the fitting performance of the proposed models is compared with the classical Bouc-Wen model. Finally, the performance of the five proposed models in modelling hysteresis nonlinearity of piezoelectric drivers is compared, in terms of RMSE, MAPE, SAPE and operation efficiency, and relevant suggestions are given.

The Effect of regularization and identity mapping on the performance of activation functions (정규화 및 항등사상이 활성함수 성능에 미치는 영향)

  • Ryu, Seo-Hyeon;Yoon, Jae-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.75-80
    • /
    • 2017
  • In this paper, we describe the effect of the regularization method and the network with identity mapping on the performance of the activation functions in deep convolutional neural networks. The activation functions act as nonlinear transformation. In early convolutional neural networks, a sigmoid function was used. To overcome the problem of the existing activation functions such as gradient vanishing, various activation functions were developed such as ReLU, Leaky ReLU, parametric ReLU, and ELU. To solve the overfitting problem, regularization methods such as dropout and batch normalization were developed on the sidelines of the activation functions. Additionally, data augmentation is usually applied to deep learning to avoid overfitting. The activation functions mentioned above have different characteristics, but the new regularization method and the network with identity mapping were validated only using ReLU. Therefore, we have experimentally shown the effect of the regularization method and the network with identity mapping on the performance of the activation functions. Through this analysis, we have presented the tendency of the performance of activation functions according to regularization and identity mapping. These results will reduce the number of training trials to find the best activation function.

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.947-952
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water/cement ratio. Based on the regression results, the influence of fly ash replacement content and water/cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water/cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water/cement ratio. But, the concrete with water/cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water/cement ratio.

  • PDF