Application of a DAEM Method for a Comparison of Devolatilization Kinetics of Imported Coals

DAEM 분석 방법을 통한 국내 수입탄의 탈휘발화 반응특성 비교연구

  • Kim, Ryang Gyoon (Department of Mechanical Engineering, Pusan National University, Eaesl) ;
  • Song, Ju Hun (Department of Mechanical Engineering, Pusan National University, PGSL) ;
  • Lee, Byoung Hwa (Department of Mechanical Engineering, Pusan National University, Ecsl) ;
  • Chang, Young June (Department of Mechanical Engineering, Pusan National University, Eaesl) ;
  • Jeon, Chung Hwan (Department of Mechanical Engineering, Pusan National University, Ecsl)
  • 김량균 (부산대학교 기계공학부 에너지 및 첨단엔진연구실) ;
  • 송주헌 (부산대학교 기계공학부 발전시스템 연구실) ;
  • 이병화 (부산대학교 기계공학부 에너지변환연구실) ;
  • 장영준 (부산대학교 기계공학부 에너지 및 첨단엔진연구실) ;
  • 전충환 (부산대학교 기계공학부 에너지변환연구실)
  • Received : 2009.08.31
  • Accepted : 2009.11.27
  • Published : 2010.02.28

Abstract

The experiment was designed to compare pyrolysis kinetics of two different classes of imported coal. The pyrolysis behaviors of the coals were first observed with thermogravimetric analyzer(TGA). The kinetic analysis was further done based on a new distributed activation energy model(New DAEM). During the analysis, weight loss curves measured at three different heating rates were used to obtain the activation energy distribution function curve f(E) of a given coal sample where a mean activation energy is determined by its peak. The results show a significant difference in the mean activation energy between two coals for the pyrolytic reaction. The prediction of a chemical percolation devolatilization(CPD) model where the kinetics obtained from the New DAEM method were incorporated is in much closer agreement with an experimental data of TGA particularly for the bituminous coal.

본 연구 목적은 두가지 종류의 국내 수입탄에 대한 열분해 반응율을 구하고 이를 비교하는 것이다. 이를 위해 TGA를 통하여 열분해 실험을 수행하였으며, 반응상수 분석은 New DAEM 방법을 이용하였다. 서로 다른 가열속도에서 각각 얻어진 TGA 질량변화 곡선으로부터, 활성화 에너지의 분포함수를 구한 후 최고빈도를 나타내는 활성화 에너지를 평균 활성화 에너지로 결정하였다. 그 결과 석탄의 종류에 따라 상기 반응에 대한 반응속도상수가 확실한 차이를 보였다. 이 같은 New DAEM 분석기법을 통해 얻은 반응상수를 적용시킨 CPD 모델을 가지고 예측한 결과가 TGA 실험치와 비교할 때보다 더 잘 일치함도 확인할 수 있었다.

Keywords

References

  1. Smith, K. L., Smoot, L. D., Fletcher, T. H. and Pugmire, R. J., "The Structure and Reaction Processes of Coal," Plenum, New York, NY(1994).
  2. Badzioch, S. and Hawksley, P. G. W., "Kinetics of Thermal Decomposition of Pulverized Coal Particles," Ind. Eng. Chem. Process Des. Develop., 9, 521-530(1970).
  3. Kobayashi, H., "Kinetics of Rapid Devolatilization of Pulverized Coal," Dept. of Mechanical Engineering, Mass. Inst. Technol., Sc. D.(1976).
  4. Anthony, D. B. and Howard, J. B., "Coal Devolatilization and Hydrogasification," AIChE J, 22, 625-656(1976). https://doi.org/10.1002/aic.690220403
  5. Solomon, P. R., Serio, M. A., Hamblen, D. G., Yu, Z.-Z. and Charpenay, S., "Advances in the FG-DVC Model of Coal Devolatilization," Div. Fuel Chem., 35, 479-488(1990).
  6. Niksa, S. and Kerstein, A. R., "FLASHCHAIN Theory for Coal Devolatilization Kinetics. 1. Formulation," Energy Fuels, 5, 647-665(1991). https://doi.org/10.1021/ef00029a006
  7. Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., Solum, M. S. and Grant, D. M., "A Chemical Percolation Model for Devolatilization: 3. Chemical Structure as a function of Coal Type," Energy Fuels, 6, 414(1992). https://doi.org/10.1021/ef00034a011
  8. Genetti, D., Fletcher, T. H. and Pugmire, R. J., "Development and Application of a Correlation of 13-C NMR Chemical Structural Analyses Coal Based on Elemental Composition and Volatile Matter Content," Energy Fuels, 13, 60-68(1987).
  9. Grant, D. M., Pugmire, R. J., Fletcher, T. H. and Kerstein, A. R., "Chemical Model of Coal Devolatilization Using Percolation Lattice Statistics," Energy Fuels, 3, 175-186(1989). https://doi.org/10.1021/ef00014a011
  10. Vand, V., "A Theory of the Irreversible Electrical Resistance Changes of Metallic Films Evaporated in Vacuum," Proc. Phys. Soc., 55, 222(1943). https://doi.org/10.1088/0959-5309/55/3/308
  11. Pitt, G. J., "The Kinetics of the Evolution of Volatile Products from Coal," Fuel, 41, 267-274(1962).
  12. Suuberg, E. M., Peter, W. A. and Howard, J. B., "Product Compositions and Formation Kinetics in Rapid Pyrolysis of Pulverized Coal; Implication for Combustion," 17th Int. Symp. Combustion, The Combustion Institute, 117-130(1978).
  13. Reynolds, J. G. and Burnham, A. K., "Pyrolysis Kinetics and Maturation of Coals from the San Juan Basin," Energy Fuels, 7, 610-619(1993). https://doi.org/10.1021/ef00041a008
  14. Solomon, P. R., Hamblen, D. G., Carangelo, R. M., Serio, M. A. and Desphande, G. V., "General Model of Coal Devolatilization," Energy Fuels, 2, 405-422(1988). https://doi.org/10.1021/ef00010a006
  15. Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., Solum, M. S. and Grant, D. M., "Chemical Percolation Model for Devolatilization: 2. Temperature and Heating Rate Effects on Product Yields," Energy Fuels, 4, 54-60(1990). https://doi.org/10.1021/ef00019a010
  16. Niksa, S. and Kerstein, A. R., "Flashchain Theory for Coal Devolatilization Kinetics; 3. Modeling the Behavior of Various Coals," Energy Fuels, 5, 673-683(1991). https://doi.org/10.1021/ef00029a008
  17. Hashimoto, K., Miura, K. and Watanabe, T., "Kinetics of Thermal Regeneration Reaction of Activated Carbons used in Waste Water Treatment," AIChE J., 28, 737-746(1982). https://doi.org/10.1002/aic.690280506
  18. Miura, K., "A New and Simple Method to Estimate f(E) and ko(E) in the Distributed Activation Energy Model from Three Sets of Experimental Data," Energy Fuels, 9, 302-307(1995). https://doi.org/10.1021/ef00050a014
  19. Taisuke, M., Akio, T. and Miura, K., "Analysis of Pyrolysis Reactions of Various Coals including Argonne Premium Coals using a New Distributed Activation Energy Model," Energy Fuels, 11, 972-977(1997). https://doi.org/10.1021/ef960224w
  20. Miura, K. and Taisuke, M., "A Simple Method for Estimating f(E) and ko(E) in the Distributed Activation Energy Model," Energy Fuels, 12, 864-869(1998). https://doi.org/10.1021/ef970212q
  21. Doyle, C. D., "Kinetic Analysis of Thermogravimetric Data," Journal of Applied Polymer Science, 15, 285-292(1961).
  22. Wen, C. Y., Bailie, R. C., Lin, C. Y. and O'Brien, W. S., "Coal Gasification," Adv. In Chemistry Series 131, Ame. Chem. Socie., 9(1974).
  23. Fletcher, T. H., Kerstein, A. R., Pugmire, R. J., Solum, M. S. and Grant, D. M., "Chemical Percolation Model for Devolatilization: 2. Temperature and Heating Rate Effects on Product Yields," Energy Fuels, 4, 54-60(1990). https://doi.org/10.1021/ef00019a010
  24. Serio, M. A., Hamblen, D. G., Markham, J. R. and Solomon, P. R., "Kinetics of Volatile Product Evolution in Coal Pyrolysis: Experiment and Theory," Energy Fuels, 1, 138-152(1987). https://doi.org/10.1021/ef00002a002