• Title/Summary/Keyword: neutron star

Search Result 51, Processing Time 0.026 seconds

Gravitational-wave Electromagnetic Counterpart Korean Observatory (GECKO): Network of Telescopes and Follow-up Observation of GW190425

  • Paek, Gregory S.H.;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.36.3-37
    • /
    • 2020
  • Recent observation of the neutron star merger event, GW170817, through both gravitational wave (GW) and electromagnetic wave (EM) observations opened a new way of exploring the universe, namely, multi-messenger astronomy (MMA). One of the keys to the success of MMA is a rapid identification of EM counterpart. We will introduce GW follow-up observation project in Korea for hunting GW EM counterpart rapidly and its strategy for prioritization of GW source host galaxy candidates. Our method relies on recent simulation results regarding plausible properties of GW source host galaxies and the low latency localization map from LIGO/Virgo. We will show a test result for both binary neutron star merger events using previous event and describe observing strategy with our facilities for GW events during the ongoing LIGO/Virgo O3 run. Finally, we report the results of optical/NIR follow-up observation of GW190425, the first neutron.

  • PDF

Prospects of the gravitational wave astronomy

  • Lee, Hyung Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.27.4-28
    • /
    • 2021
  • Since the first direct detection of the gravitational waves in 2015, more than 50 events coming from the merging of compact binaries composed of black holes and neutron stars have been observed. The simultaneous detection of gravitational waves and electromagnetics waves from the merging of neutron stars opened up multi-messenger astronomy. The forthcoming observations with better sensitivity by the network of ground based detectors will enrich the gravitational wave source populations and provide valuable information regarding stellar evolution, dynamics of dense stellar systems, and star formation history across the cosmic time. The precision of the Hubble constant from the distance measurement of gravitational sources will improve with more binary neutron star events are observed together with the aftweglows. I will also briefly cover the expected scientiic outcomes from the future detectors that are sensitive to much lower frequenies than current detectors.

  • PDF

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A.;Yang, Jong-Mann
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.

Observing the central engine of GRB170817A

  • van Putten, Maurice H.P.M.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.39.2-39.2
    • /
    • 2018
  • GW170817/GRB170817A establishes a double neutron star merger as the progenitor of a short gamma-ray burst, starting 1.7 s post-coalescence. GRB170817A represents prompt or continuous emission from a newly formed hyper-massive neutron star or black hole. We report on a deep search for broadband extended gravitational-wave emission in spectrograms up to 700 Hz of LIGO O2 data covering this event produced by butterfly filtering comprising a bank of templates of 0.5 s. A detailed discussion is given of signal-to-noise ratios in image analysis of spectrograms and confidence levels of candidate features. This new pipeline is realized by heterogeneous computing with modern graphics processor units (GPUs). (Based on van Putten, M.H.PM., 2017, PTEP, 093F01.)

  • PDF

Evolution of Spin and Superorbital Modulation in 4U 0114+650

  • Hu, Chin-Ping;Ng, Chi-Yung;Chou, Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.173-176
    • /
    • 2016
  • We report on a systematic analysis of the spin and superorbital modulations of the high-mass X-ray binary 4U 0114+650, which consists of the slowest spinning neutron star known. Utilizing dynamic power spectra, we found that the spin period varied dramatically during the RXTE ASM and Swift BAT observations. This variation consists of a long-term spin-up trend, and two ~1,000 day and one ~600 day random walk epochs previously, MJD 51,000, ~MJD 51,400-52,000, and ~MJD 55,100-56,100. We further found that the events appear together with depressions of superorbital modulation amplitude. This provides evidence of the existence of an accretion disk, although the physical mechanism of superorbital modulation remains unclear. Furthermore, the decrease of the superorbital modulation amplitude may be associated with the decrease of mass accretion rate from the disk, and may distribute the accretion torque of the neutron star randomly in time.

MONTE-CARLO SIMULATION OF NEUTRON STAR ORBITS IN THE GALAXY

  • TAANI, ALI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.583-584
    • /
    • 2015
  • In this paper, the numerical results concerning different orbits of a 3D axisymmetric non-rotating galactic potential are presented. We use $Paczy{\acute{n}}ski^{\prime}s$ gravitational potential with different birth velocity distributions for the isolated old Neutron Star (NS) population. We note some smooth non-constant segments corresponding to regular orbits as well as the characterization of their chaoticity. This is strongly related to the effect of different kick velocities due to supernovae mass-loss and natal kicks to the newly-formed NS. We further confirm that the dynamical motion of the isolated old NSs in the gravitational field becomes obvious, with some significant diffraction in the symmetry of their orbital characteristics.

Gravitational-wave EM Counterpart Korean Observatory (GECKO): Network of Telescopes and Follow-up Result for S190425z

  • Paek, Gregory SungHak;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.76.2-76.2
    • /
    • 2019
  • Recent observation of the neutron star merger event, GW170817, through both gravitational wave (GW) and electromagnetic wave (EM) observations opened a new way of exploring the universe, namely, multi-messenger astronomy (MMA). One of the keys to the success of MMA is a rapid identification of EM counterpart. We will introduce the strategy for prioritization of GW source host galaxy candidates. Our method relies on recent simulation results regarding plausible properties of GW source host galaxies and the low latency localization map from LIGO/Virgo. We will show the test results for both NS merger and BH merger events using previous events and describe observing strategy with our facilities for GW events during the ongoing LIGO/Virgo O3 run. Finally, we report the result of follow-up observation on, the first neutron star merger event, S190425z, during LIGO/VIrgo O3 run.

  • PDF