• Title/Summary/Keyword: neutralization factor

Search Result 38, Processing Time 0.029 seconds

A Study on Evaluation of Complex Deterioration evaluation and Prediction of Residual Life through Concrete Core (콘크리트 코어 분석을 통한 복합열화 평가와 잔존수명 예측 연구)

  • Shim, Jaeyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.332-339
    • /
    • 2017
  • In the case of aged structures, the information of the structure is often lost after the completion of construction, and there is a great difficulty in predicting the durability life of the structure due to the lack of information on concrete formulations. In this study, the durability of concrete specimens was evaluated by various field and indoor test methods based on the core specimens collected from the field, and the durability life of the concrete structures was predicted by using the FEM analysis technique.As a result, the neutralization rate coefficient was $5.38E-6(cm^2/day)$ and the rate of progress was low. And the possibility of complex deterioration due to carbonation and salting was found to be very low.

Cancer-associated fibroblast stimulates cancer cell invasion in an interleukin-1 receptor (IL-1R)-dependent manner

  • Xianglan Zhang;Young Sun Hwang
    • Oncology Letters
    • /
    • v.18 no.5
    • /
    • pp.4645-4650
    • /
    • 2019
  • Tumor microenvironment serves an important role in tumor growth and metastasis. Cancer cells can promote growth and malignancy by altering the surrounding stroma. Cancer-associated fibroblast (CAF) are an abundant cell type present within the tumor microenvironment and provide tumorigenic features by secreting cytokines. In the current study, the CAF-mediated invasion of oral squamous cell carcinoma (OSCC) was investigated and the associated mechanisms were elucidated. Cancer invasion was estimated using a Matrigel-coated Transwell chamber and FITC-gelatin matrix. To verify the effect of the tumor microenvironment, conditioned media (CM) from normal fibroblast (NF) and CAFs were prepared. An ELISA was performed to estimate the level of IL-1β. A proteome profiler human protease array was performed to verify the proteases affected by stimulation with CM, from CAF. Recombinant IL-1β protein increased the invasion of OSCC cells. IL-1β expression was higher in CAF than NF. CM from CAF (CM-CAF) increased cancer invasion and FITC-gelatin matrix degradation. The invasive capacity provided by CAF was abrogated by an IL-1 receptor (IL-1R) antagonist. Additionally, CM-CAF increased the secretion of ADAM 9 and Kallikrein 11 from OSCC cells. The invasion activity by CM-CAF was partially abrogated by the neutralization of ADAM 9 or Kallikrein 11. In conclusion, by providing stromal factor, CAFs were a critical inducer of OSCC invasion, and CAF secretes the required amount of IL-1β to increase cancer invasion activity. The invasive capacity of CAF was identified to be IL-1R-dependent. ADAM 9 and Kallikrein 11 were influencing factors involved in the increase of CAF-mediated cancer invasion.

Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells

  • Katagiri, Wataru;Kawai, Takamasa;Osugi, Masashi;Sugimura-Wakayama, Yukiko;Sakaguchi, Kohei;Kojima, Taku;Kobayashi, Tadaharu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.8.1-8.8
    • /
    • 2017
  • Background: For an effective bone graft for reconstruction of the maxillofacial region, an adequate vascular network will be required to supply blood, osteoprogenitor cells, and growth factors. We previously reported that the secretomes of bone marrow-derived mesenchymal stem cells (MSC-CM) contain numerous growth factors such as insulin-like growth factor (IGF)-1, transforming growth factor $(TGF)-{\beta}1$, and vascular endothelial growth factor (VEGF), which can affect the cellular characteristics and behavior of regenerating bone cells. We hypothesized that angiogenesis is an important step for bone regeneration, and VEGF is one of the crucial factors in MSC-CM that would enhance its osteogenic potential. In the present study, we focused on VEGF in MSC-CM and evaluated the angiogenic and osteogenic potentials of MSC-CM for bone regeneration. Methods: Cytokines in MSC-CM were measured by enzyme-linked immunosorbent assay (ELISA). Human umbilical vein endothelial cells (HUVECs) were cultured with MSC-CM or MSC-CM with anti-VEGF antibody (MSC-CM + anti-VEGF) for neutralization, and tube formation was evaluated. For the evaluation of bone and blood vessel formation with micro-computed tomography (micro-CT) and for the histological and immunohistochemical analyses, a rat calvarial bone defect model was used. Results: The concentrations of IGF-1, VEGF, and $TGF-{\beta}1$ in MSC-CM were $1515.6{\pm}211.8pg/mL$, $465.8{\pm}108.8pg/mL$, and $339.8{\pm}14.4pg/mL$, respectively. Tube formation of HUVECs, bone formation, and blood vessel formation were increased in the MSC-CM group but decreased in the MSC-CM + anti-VEGF group. Histological findings suggested that new bone formation in the entire defect was observed in the MSC-CM group although it was decreased in the MSC-CM + anti-VEGF group. Immunohistochemistry indicated that angiogenesis and migration of endogenous stem cells were much more abundant in the MSC-CM group than in the MSC-CM + anti-VEGF group. Conclusions: VEGF is considered a crucial factor in MSC-CM, and MSC-CM is proposed to be an adequate therapeutic agent for bone regeneration with angiogenesis.

Chemical characteristics of wet precipitation in urban and mountainous sites of Jeju Island

  • Bu, Jun-Oh;Song, Jung-Min;Park, Sook-Young;Kang, Hee-Ju;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2020
  • Wet precipitation samples were collected in Jeju City and Mt. Halla-1100 site (a site at an altitude of 1100 m on Mt. Halla) during 2011-2013, and their major ionic species were analyzed to examine the chemical composition and characteristics. A comparison of ion balance, electric conductivity, and acid fraction of precipitation revealed correlation coefficients in the range of r = 0.950~0.991, thereby implying the high quality of analytical data. Volume-weighted mean pH and electric conductivity corresponded to 4.86 and 25.5 µS/cm for Jeju City, and 4.98 and 15.1 µS/cm for Mt. Halla-1100 site, respectively. Ionic strengths of the wet precipitation in Jeju City and Mt. Halla-1100 site corresponded 0.3 ± 0.5 and 0.2 ± 0.2 mM, respectively, thereby indicating that more than 30 % of total precipitation was within a pure precipitation criteria. The precipitation with a pH range of 4.5 - 5.0 corresponded to 40.8 % in Jeju City, while the precipitation with a pH range of 5.0 - 5.5 corresponded to 56.9 % in Mt. Halla-1100 site, thereby indicating slightly more weak acidity than that in Jeju city. The volume-weighted mean concentration (µeq/L) of ionic species was in the order of Na+ > Cl- > nss-SO42- > NO3- > Mg2+ > NH4+ > H+ > nss-Ca2+ > PO43- > K+ > CH3COO- > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Jeju City area, while it corresponded to Na+ > Cl- > nss-SO42- > NO3- > NH4+ > H+ > Mg2+ > nss-Ca2+ > PO43- > CH3COO- > K+ > HCOO- > NO2- > F- > HCO3- > CH3SO3- at Mt. Halla-1100 site. The compositions of sea salts (Na+, Cl-, Mg2+) and secondary pollutants (NH4+, nss-SO42-, NO3-) corresponded to 66.1 % and 21.8 %, respectively, in Jeju City and, 49.9 % and 31.5 %, respectively, in Mt. Halla-1100 site. The acidity contributions in Jeju City and Mt. Halla-1100 site by inorganic acids, i.e., sulfuric acid and nitric acid, corresponded to 93.9 % and 91.4 %, respectively, and the acidity contributions by organic acids corresponded to 6.1 % and 8.6 %, respectively. The neutralization factors in Jeju City and Mt. Halla1100 site by ammonia corresponded to 29.8 % and 30.1 %, respectively, whereas the neutralization factors by calcium carbonate corresponded to 20.5 % and 25.2 %, respectively. From the clustered back trajectory analysis, the concentrations of most ionic components were higher when the airflow pathways were moved from the continent to Jeju area.

Production of $TGF-{\beta}1$ as a Mechanism for Defective Antigen-presenting Cell Function of Macrophages Generated in vitro with M-CSF

  • Lee, Jae-Kwon;Lee, Young-Ran;Lee, Young-Hee;Kim, Kyung-Jae;Lee, Chong-Kil
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Macrophages generated in vitro using macrophage-colony stimulating factor (M-CSF) and interleukin (IL)-6 from bone marrow cells (BM-Mp) are defective in antigen presenting cell (APC) function as shown by their ability to induce the proliferation of anti-CD3 mAb-primed syngeneic T cells. However, they do express major histocompatibility (MHC) class I and II molecules. accessory molecules and intracellular adhesion molecules. Here we demonstrate that the defective APC function of macrophages is mainly due to production of $TGF-{\beta}1$ by BM-Mp. Methods: Microarray analysis showed that $TGF-{\beta}1$ was highly expressed in BM-Mp, compared to a macrophage cell line, B6D. which exerted efficient APC function. Production of $TGF-{\beta}1$ by BM-Mp was confirmed by neutralization experiments of $TGF-{\beta}1$ as well as by real time-polymerase chain reaction (PCR). Results: Addition of $anti-TGF-{\beta}1$ monoclonal antibody to cultures of BM-Mp and anti-CD3 mAb-primed syngeneic T cells efficiently induced the proliferation of syngeneic T cells. Conversely, the APC function of B6D cells was almost completely suppressed by addition of $TGF-{\beta}1$. Quantitative real time-PCR analysis also confirmed the enhanced expression of $TGF-{\beta}1$ in BM-Mp. Conclusion: The defective APC function of macrophages generated in vitro with M-CSF and IL-6 was mainly due to the production of $TGF-{\beta}1$ by macrophages.

Study on Establishment of the Industrial Wastewater Effluent Limitations Based on Best Practicable Control Technology Currently Available - Case Study for the Pulp, Paper and Paper Board Manufacturing (실용 가능한 최적처리기술에 근거한 산업폐수 배출허용기준 설정 연구 - 펄프.종이 및 종이제품 제조시설 적용 사례)

  • Kim, Jaehoon;Shin, Jinsoo;Lee, Chulgu;Lee, Jungyoung;Lee, Youngsun;Yu, Soonju
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.608-614
    • /
    • 2012
  • The effluent limitation of industrial wastewater is based on uniform regulatory criteria for effluent discharge facilities of all in Korea. But, an individual effluent limitation on each effluent discharge facility is widely applicable for regulation of industrial wastewater in US.EPA. To decide an individual effluent limitation, TBEL (Technology-based effluent limitation) and WQBEL (Water quality-based effluent limitation) are used. TBEL is based on the capability of a treatment technology to reduce the pollutants. WQBEL is based on ambient water quality standards. In this study, TBEL were derived for the pulp, paper and paper board manufacturing based on best practicable control technology currently available. It was suggested that effluent limitations were $BOD_5$ 4.7 mg/L, $COD_{Mn}$ 44.3 mg/L, SS 13.2 mg/L, TN 1.4 mg/L, TP 0.15 mg/L and best practicable control technology currently available (BPT) was neutralization, activated sludge treatment and coagulation and sedimentation for the pulp, paper and paper board manufacturing.

Application of Synthetic Mineral Microparticles with Various Metal Species

  • Lee, Sa-Yong;Hubbe, Martin A.
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.5
    • /
    • pp.1-10
    • /
    • 2008
  • Synthetic mineral microparticles (SMM) is a patented system which has been developed to promote drainage of water and retention of fine particles during papermaking. It is shown in patents that the SMM system can have advantages in both of drainage and retention, compared with montmorillonite (bentonite), which is one of the most popular materials presently used in this kind of application. Turbidity and gravity drainage time were measured using a Britt-Jar test with representative SMM formulations, in order to confirm the efficacy of SMM covering a wide range of compositions and discover effects of some key variables that have the potential to lead to unexpected advantages in terms of the effectiveness of the microparticles, when used in combination with a cationic polyacrylamide treatment of papermaking furnish. An iron silicate showed highest retention performance, as well as suitably fast drainage time relative to other metal silicate and bentonite. Zinc silicate improved retention and drainage. SMM synthesized from aluminum sulfate ($Al_2(SO_4){_3}$) did not show a benefit in retention and drainage, relative to bentonite. SMM synthesized from aluminum chloride ($AlCl_3$) performed better in drainage and retention than bentonite when the Al/Si ratios were 0.76 and 1.00. It was found that when the Al/Si ratio and neutralization are considered, pH variation due to the change of Al/Si ratio can be a key factor to control the size of primary metal silicate particles and the degree of coagulation of the primary particles.

Reaction Path Modeling of Granitic Cultural Properties and Its Implication for Preservation (화강암질 석조문화재의 풍화반응경로 특성과 보존에 대한 제언)

  • Park Maeng-Eon;Sung Kyu-Youl
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.83-92
    • /
    • 2005
  • Dissolution rate of minerals may differ from climates configuration, but weathering rate of feldspars is generally proved to be relatively higher The result of geochemical reaction modeling indicates the acid water of pH 4.5 excluding any other variables, was 2.3 times higher than that in ordinary rain of pH 5.7. This result proved that pH is very important factor in preservation of granite cultural properties. To prevent the weathering of stone cultural properties, weathering characteristics of stones should be studied first and constitution of dry environments, using water repellent or oil coating, isolating water which cause chemical weathering reaction like hydration and oxidization should be considered. Considering the long-term reactions between granite and rain, selection of materials, which can bring neutralization and non-oxidization conditions, are very important in using cleaning agents and biological controls.

Production of the polyclonal subunit C protein antibody against Aggregatibacter actinomycetemcomitans cytolethal distending toxin

  • Lee, Su-Jeong;Park, So-Young;Ko, Sun-Young;Ryu, So-Hyun;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.335-342
    • /
    • 2008
  • Purpose: Cytolethal distending toxin (CDT) considered as a key factor of localized aggressive periodontitis, endocarditis, meningitis, and osteomyelitis is composed of five open reading frames (ORFs). Among of them, the individual role of CdtA and CdtC is not clear; several reports presents that CDT is an AB2 toxin and they enters the host cell via clathrin-coated pits or through the interaction with GM3 ganglioside. So, CdtA, CdtC, or both seem to be required for the delivery of the CdtB protein into the host cell. Moreover, recombinant CDT was suggested as good vaccine material and antibody against CDT can be used for neutralization or for a detection kit. Materials and Methods: We constructed the pET28a-cdtC plasmid from Aggregatibacter actinomycetemcomitans Y4 by genomic DNA PCR and expressed in BL21 (DE3) Escherichia coli system. We obtained the antibody against the recombinant CdtC in mice system. Using the anti-CdtC antibody, we test the native CdtC detection by ELISA and Western Blotting and confirm the expression time of native CdtC protein during the growth phase of A. actinomycetemcomitans. Results: In this study we reconstructed CdtC subunit of A. actinomycetemcomitans Y4 and generated the anti CdtC antibody against recombinant CdtC subunit expressed in E. coli system. Our anti CdtC antibody can be interacting with recombinant CdtC and native CDT in ELISA and Western system. Also, CDT holotoxin existed at 24h but not at 48h meaning that CDT holotoxin was assembled at specific time during the bacterial growth. Conclusion: In conclusion, we thought that our anti CdtC antibody could be used mucosal adjuvant or detection kit development, because it could interact with native CDT holotoxin.

Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture

  • Park, Ho-Sung;Park, Byoung-Jun;Kim, Hyun-Ki;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.423-434
    • /
    • 2004
  • In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the 'conventional' SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials as well as to consider a fixed number of input nodes at polynomial neurons (or nodes) located in each layer. However, this design process does not guarantee that the conventional SOPNN generated through learning results in optimal network architecture. The design procedure applied in the construction of each layer of the SOPNN deals with its structural optimization involving the selection of preferred nodes (or PNs) with specific local characteristics (such as the number of input variables, the order of the polynomials, and input variables) and addresses specific aspects of parametric optimization. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between the approximation and generalization (predictive) abilities of the model. To evaluate the performance of the GA-based SOPNN, the model is experimented using pH neutralization process data as well as sewage treatment process data. A comparative analysis indicates that the proposed SOPNN is the model having higher accuracy as well as more superb predictive capability than other intelligent models presented previously.reviously.