• Title/Summary/Keyword: neutral heating

Search Result 98, Processing Time 0.032 seconds

Enhanced ICRF Heating of H-mode Plasmas in KSTAR

  • Kim, Sun-Ho;Wang, Son-Jong;Ahn, Chan-Yong;Kim, Sung-Kyew
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.317-317
    • /
    • 2011
  • Enhanced ICRF (Ion Cyclotron Range of Frequency) ion heating of H-mode D(H) plasma will be tried in 2011 KSTAR experimental campaign. Minority heating is a main ion heating scheme in the ICRF. Its efficiency increases as the hydrogen minority ratio increases in deuterium plasmas. And it should be sustained at a lower level than the critical minority ratio. Consequently, it is important to elevate the critical ratio to maximize ion heating and it is possible by increasing the ion temperature or parallel wave number (k${\parallel}$) of the antenna. Increasing the k${\parallel}$ is not a good approach since the coupling efficiency decreases exponentially with regard to k${\parallel}$ as well. So the remaining method is to increase ion temperature by using NB (Neutral Beam). Ion heating fraction of NB increases as the electron temperature increases. Therefore, we will try to heat electron by using ECH together with NB ion heating before ICRF power injection. The ICRF heating efficiency will be compared with respect to several NB+ECH+ICRF heating combinations through several diagnostics such as XICS (Xray Imaging Crystal Spectroscopy), CES (Charge Exchange Spectroscopy) and neutron measurement. The theoretical background and the experimental results will be presented in more detail in the conference.

  • PDF

The Prevention of The Longitudinal Deformation due to Fillet Welding by using Induction Heating (고주파가열에 의한 Built-up재의 용접종굽힘 변형방지)

  • Park Jeong-Ung;Chang Kyong-Ho;Lee Hae-Woo;An Gyu-Baek
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.47-53
    • /
    • 2005
  • Longitudinal deformation is produced by fillet welding during the fabrication of built-up beams and decreases productivity and quality because it needs an extra correcting process. The deformation is caused by welding moment, which is the value multiplied the welding shrinking farce by the distance from the neutral axis. This welding moment can be offset by generating a moment in the same magnitude and in an opposite direction by induction heating. The location and quantity of the induction heating are decided via experiments and simple equations. This study, first, clarifies the creation mechanism of the longitudinal deformation with FEM analysis. Then, we presents the preventive method of this deformation by induction heating basing on the mechanism and verifies its validity through analysis and experiments.

Development of RF Ion Source for Neutral Beam Injector in Fusion Devices

  • Jang, Du-Hui;Park, Min;Kim, Seon-Ho;Jeong, Seung-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.550-551
    • /
    • 2013
  • Large-area RF-driven ion source is being developed at Germany for the heating and current drive of ITER plasmas. Negative hydrogen (deuterium) ion sources are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen ions have been successfully developed at IPP (Max-Planck- Institute for Plasma Physics, Garching) for ASDEX-U and W7-AS neutral beam injection (NBI) systems. In recent, the first NBI system (NBI-1) has been developed successfully for the KSTAR. The first and second long-pulse ion sources (LPIS-1 and LPIS-2) of NBI-1 system consist of a magnetic bucket plasma generator with multi-pole cusp fields, filament heating structure, and a set of tetrode accelerators with circular apertures. There is a development plan of large-area RF ion source at KAERI to extract the positive ions, which can be used for the second NBI (NBI-2) system of KSTAR, and to extract the negative ions for future fusion devices such as ITER and K-DEMO. The large-area RF ion source consists of a driver region, including a helical antenna (6-turn copper tube with an outer diameter of 6 mm) and a discharge chamber (ceramic and/or quartz tubes with an inner diameter of 200 mm, a height of 150 mm, and a thickness of 8 mm), and an expansion region (magnetic bucket of prototype LPIS in the KAERI). RF power can be transferred up to 10 kW with a fixed frequency of 2 MHz through a matching circuit (auto- and manual-matching apparatus). Argon gas is commonly injected to the initial ignition of RF plasma discharge, and then hydrogen gas instead of argon gas is finally injected for the RF plasma sustainment. The uniformities of plasma density and electron temperature at the lowest area of expansion region (a distance of 300 mm from the driver region) are measured by using two electrostatic probes in the directions of short- and long-dimension of expansion region.

  • PDF

A Study on the Suggestion of Thermal Comfort Range in Radiant Floor Ondol Heating System

  • Chung, Kwang-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.2
    • /
    • pp.108-112
    • /
    • 2004
  • The purpose of this study is to investigate the characteristics of thermal comfort index and to present the thermal comfort range through regression analyses and experiment in a radiant floor heating system laboratory. The results were compared to the comfort zone of ISO-7730, and the applicability of the thermal comfort index to a radiant floor heating system was studied. On comparing the sedentary posture on the floor to sitting on the chair, the comfort zone and the neutral point of comfort index showed different values. It is considered that the influence of conduction from floor to the human is sufficient. Moreover, we could find a correlation between the thermal sensation votes of subjects, and the comfort indexes were lower than those by calculation.

Development of the New Hormonic Eliminating Device Using Zig-Zag Connection and Open-Delta Mode (Zig-Zag 결선 및 Open-Delta 방식을 이용한 새로운 고조파 저감장치의 개발)

  • Lee, Sung-Ho;Kim, Gi-Sung;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.169-174
    • /
    • 2005
  • The conventional harmonic filters to reduce zero harmonic current from neutral reactors and Zig-Zag connection, have several disadvantages of the decreased reduction rate of harmonics under a light load, because they have the load factor-dependent reduction rate of harmonics, and the risk of potential breaking in the neutral line by heated neutral reactor. Based Zig-Zag connection and Open-Delta mode, this new harmonic eliminating device (HANOS) adopts the combination of Zig-Zag connection and Open-Delta mode-the latter is additionally applied to the transformer's core block for connection to the neutral line. The results of this study demonstrated that the new device could eliminate safely zero harmonic current running in the neutral line without heating.

New harmonic drop device develop take advantage of Zig-zag TR line and Open Delta mode (Zig-zag 결선 및 Open Delta 방식을 이용한 새로운 고조파 저감장치의 개발)

  • Yoo, Sang-Bong;Lee, Sung-Ho;Kim, Gi-Sung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.101-104
    • /
    • 2004
  • The past harmonic filter was reactor and Zig-zag. However neutral reactor over heating become an issue. If take advantage of Zig-zag TR line and Neutral line Open Delta mode TR to disappear TR sounds and harmonic by the help of experiments. The disappear harmonic have not relation of neutral line electric current quantity

  • PDF

Microwave Electric Field and Magnetic Field Simulations of an ECR Plasma Source for Hyperthermal Neutral Beam Generation

  • Lee, Hui-Jae;Kim, Seong-Bong;Yu, Seok-Jae;Jo, Mu-Hyeon;NamGung, Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.501-501
    • /
    • 2012
  • A 2.45 GHz electron cyclotron resonance (ECR) plasma source with a belt magnet assembly configuration (BMC) was developed for hyperthermal neutral beam (HNB) generation. A plasma source for high flux HNB generation should be satisfied with the requirements: low pressure operation, high density, and thin plasma. The ECR plasma source with BMC achieved high density at low operation pressure due to electron confinement enhancement caused by high mirror ratio and drifts in toroidal direction. The 2.45 GHz microwave launcher had a circularly bended WR340 waveguide with slits. The microwave E-field profile induced by the microwave launcher was studied in this paper. The E-field profile was a cups field perpendicular to B-filed at ECR zone. The optimized E-field profile and B-field were found for effective ECR heating.

  • PDF

Discharge Characteristics of Large-Area High-Power RF Ion Source for Neutral Beam Injector on Fusion Devices

  • Chang, Doo-Hee;Park, Min;Jeong, Seung Ho;Kim, Tae-Seong;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.1-241.1
    • /
    • 2014
  • The large-area high-power radio-frequency (RF) driven ion sources based on the negative hydrogen (deuterium) ion beam extraction are the major components of neutral beam injection (NBI) systems in future large-scale fusion devices such as an ITER and DEMO. Positive hydrogen (deuterium) RF ion sources were the major components of the second NBI system on ASDEX-U tokamak. A test large-area high-power RF ion source (LAHP-RaFIS) has been developed for steady-state operation at the Korea Atomic Energy Research Institute (KAERI) to extract the positive ions, which can be used for the NBI heating and current drive systems in the present fusion devices, and to extract the negative ions for negative ion-based plasma heating and for future fusion devices such as a Fusion Neutron Source and Korea-DEMO. The test RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of RF discharge. The characteristics and uniformities of the plasma parameter in the RF ion source were measured at the lowest area of the expansion bucket using two RF-compensated electrostatic probes along the direction of the short- and long-dimensions of the expansion region. The plasma parameters in the expansion region were characterized by the variation of loaded RF power (voltage) and filling gas pressure.

  • PDF

Contributions of Heating and Forcing to the High-Latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field

  • Kwak, Young-Sil;Richmond, Arthur;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.205-212
    • /
    • 2010
  • To better understand the physical processes that maintain the high-latitude lower thermospheric dynamics, we have identified relative contributions of the momentum forcing and the heating to the high-latitude lower thermospheric winds depending on the interplanetary magnetic field (IMF) and altitude. For this study, we performed a term analysis of the potential vorticity equation for the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions, with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Difference potential vorticity forcing and heating terms, obtained by subtracting values with zero IMF from those with non-zero IMF, are influenced by the IMF conditions. The difference forcing is more significant for strong IMF $B_y$ condition than for strong IMF $B_z$ condition. For negative or positive $B_y$ conditions, the difference forcings in the polar cap are larger by a factor of about 2 than those in the auroral region. The difference heating is the most significant for negative IMF $B_z$ condition, and the difference heatings in the auroral region are larger by a factor of about 1.5 than those in the polar cap region. The magnitudes of the difference forcing and heating decrease rapidly with descending altitudes. It is confirmed that the contribution of the forcing to the high-latitude lower thermospheric dynamics is stronger than the contribution of the heating to it. Especially, it is obvious that the contribution of the forcing to the dynamics is much larger in the polar cap region than in the auroral region and at higher altitude than at lower altitude. It is evident that when $B_z$ is negative condition the contribution of the forcing is the lowest and the contribution of the heating is the highest among the different IMF conditions.

Thermal Comfort Range of Radiant Floor Heating System by Residential Style (생활특성에 따른 바닥복사난방 공간의 열쾌적 범위에 관한 연구)

  • Kim, Sang-Hun;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • This study has been purposed to provide thermal comfort range in accordance with the residential style of radiant floor heating space, and to compare it with the thermal comfort range at predicted mean vote. The survey for the thermal sensation vote to the subjects and the measurement of environmental factors has been executed, and regression analysis has been performed. It is interpreted that the combination of the physical factor and the psychological factor results lower neutral point of the floor sitting style than that of the chair sitting style. There are some difference between the measured predicted mean vote and the thermal sensation vote via survey, which appears to be caused by distinctive heat transfer characteristic of floor radiant heating space, such as, high radiant temperature and contact thermal sensation of floor surface.