Browse > Article
http://dx.doi.org/10.5140/JASS.2010.27.3.205

Contributions of Heating and Forcing to the High-Latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field  

Kwak, Young-Sil (Solar and Space Weather Research Group, Korea Astronomy and Space Science Institute)
Richmond, Arthur (High Altitude Observatory, National Center for Atmospheric Research)
Ahn, Byung-Ho (Department of Earth Science, Kyungpook National University)
Cho, Kyung-Suk (Solar and Space Weather Research Group, Korea Astronomy and Space Science Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.27, no.3, 2010 , pp. 205-212 More about this Journal
Abstract
To better understand the physical processes that maintain the high-latitude lower thermospheric dynamics, we have identified relative contributions of the momentum forcing and the heating to the high-latitude lower thermospheric winds depending on the interplanetary magnetic field (IMF) and altitude. For this study, we performed a term analysis of the potential vorticity equation for the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions, with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Difference potential vorticity forcing and heating terms, obtained by subtracting values with zero IMF from those with non-zero IMF, are influenced by the IMF conditions. The difference forcing is more significant for strong IMF $B_y$ condition than for strong IMF $B_z$ condition. For negative or positive $B_y$ conditions, the difference forcings in the polar cap are larger by a factor of about 2 than those in the auroral region. The difference heating is the most significant for negative IMF $B_z$ condition, and the difference heatings in the auroral region are larger by a factor of about 1.5 than those in the polar cap region. The magnitudes of the difference forcing and heating decrease rapidly with descending altitudes. It is confirmed that the contribution of the forcing to the high-latitude lower thermospheric dynamics is stronger than the contribution of the heating to it. Especially, it is obvious that the contribution of the forcing to the dynamics is much larger in the polar cap region than in the auroral region and at higher altitude than at lower altitude. It is evident that when $B_z$ is negative condition the contribution of the forcing is the lowest and the contribution of the heating is the highest among the different IMF conditions.
Keywords
high-latitude lower thermosphere; Interplanetary magnetic field; forcing; heating;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Maeda, S., Fuller-Rowell, T. J., & Evans, D. S. 1989, JGRA, 94, 16869, doi: 10.1029/JA094iA12p16869   DOI
2 McCormac, F. G. & Smith, R. W. 1984, GeoRL, 11, 935, doi: 10.1029/GL011i009p00935   DOI
3 McCormac, F. G., Killeen, T. L., Gombosi, E., Hays, P. B., & Spencer, N. W. 1985, GeoRL, 12, 155, doi: 10.1029/GL012i004p00155   DOI
4 McCormac, F. G., Killeen, T. L., & Thayer, J. P. 1991, JGR, 96, 115, doi: 10.1029/90JA01996   DOI
5 McHarg, M., Chun, F., Knipp, D., Lu, G., Emery, B. A., & Ridley, A. 2005, JGR, 110, A08309, doi: 10.1029/2004JA010949   DOI
6 Meriwether, J. W. & Shih, P. 1987, AnGeo, 5A, 329
7 Niciejewski, R. J., Killeen, T. L., Johnson, R. M., & Thayer, J. P., 1992, AdSpR, 12, 215, doi: 10.1016/0273-1177(92)90058-6   DOI
8 Niciejewski, R. J., Killeen, T. L., & Won, Y. 1994, JATP, 56, 285   DOI
9 Pedlosky, J. 1979, in Geophysical Fluid Dynamics, ed. J. Pedlosky (New York: Springer-Verlag), p.624
10 Kwak, Y. S., Ahn, B. H., & Kim, K. H. 2008a, JASS, 25, 415
11 Kwak, Y. S., Lee, J. J., Ahn, B. H., Hwang, J., Kim, K. H., & Cho, K. S. 2008b, JASS, 25, 405
12 Rees, D. & Fuller-Rowell, T. J. 1989, RSPTA, 328, 139   DOI
13 Rees, D. & Fuller-Rowell, T. J. 1990, AdSpR, 10, 197, doi: 10.1016/0273-1177(90)90254-W   DOI
14 Richmond, A. D., Lathuillere, C., & Vennerstroem, S. 2003, JGRA, 108, 1066, doi: 10.1029/2002JA009493   DOI
15 Foster, J. C., Holt, J. M., Musgrove, R. G., & Evans, D. S. 1986, in Solar Wind-Magnetosphere Coupling, eds. Y. Kamide & J. A. Slavin (Tokyo: Terra Scientific Publishing Company), p. 477
16 Hagan, M. E. & Forbes, J. M. 2002, JGRD, 107, 4754, doi: 10.1029/2001JD001236   DOI
17 Heppner, J. P. 1972, JGR, 77, 4877, doi: 10.1029/JA077i025p04877   DOI
18 Heppner, J. P. & Maynard, N. C. 1987, JGR, 92, 4467, doi: 10.1029/JA092iA05p04467   DOI
19 Hernandez, G., McCormac, F. G., & Smith, R. W. 1991, JGR, 96, 5777, doi: 10.1029/90JA02458   DOI
20 Killeen, T. L., Hays, P. B., Heelis, R. A., Hanson, W. B., & Spencer, N. W. 1985, GeoRL, 12, 159, doi: 10.1029/GL012i004p00159   DOI
21 Won, Y. 1994, PhD Thesis, University of Michigan
22 Killeen, T. L., Won, Y. I., Niciejewski, R. J., & Burns, A. G. 1995, JGRA, 100, 21327, doi: 10.1029/95JA01208   DOI
23 Richmond, A. D., Ridley, E. C., & Roble, R. G. 1992, GeoRL, 19, 601, doi: 10.1029/92GL00401   DOI
24 Ruohoniemi, J. M. & Greenwald, R. A. 1996, JGRA, 101, 21743, doi: 10.1029/96JA01584   DOI
25 Sica, R. J., Hernandez, G., Emery, B. A., Roble, R. G., Smith, R. W., & Rees, M. H., 1989, JGRA, 94, 11921, doi: 10.1029/JA094iA09p11921   DOI
26 Thayer, J. P., Killeen, T. L., McCormac, F. G., Tschan, C. R., Ponthieu, J. J., & Spencer, N. W. 1987, AnGeo, 5A, 363
27 Weimer, D. R. 1995, JGRA, 100, 19595, doi: 10.1029/95JA01755   DOI
28 Weimer, D. R. 2001, JGRA, 106, 407, doi: 10.1029/2000JA000604   DOI
29 Zhang, X. X., Wang, C., Chen, Y., Wang, Y. L., Tan, A., Wu, T. S., Germany, G. A., & Wang, W. 2005, JGR, 110, A12208, doi: 10.1029/2005JA011222   DOI
30 Kwak, Y. S. & Richmond, A. D. 2007, JGR, 112, A01306, doi: 10.1029/2006JA011910   DOI
31 Kwak, Y. S., Richmond, A. D., & Roble, R. G. 2007, JGR, 112, A06316, doi: 10.1029/2006JA012208   DOI