• Title/Summary/Keyword: neutral difference equations

Search Result 28, Processing Time 0.025 seconds

Asymptotic Results for a Class of Fourth Order Quasilinear Difference Equations

  • Thandapani, Ethiraju;Pandian, Subbiah;Dhanasekaran, Rajamannar
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.477-488
    • /
    • 2006
  • In this paper, the authors first classify all nonoscillatory solutions of equation (1) $${\Delta}^2|{\Delta}^2{_{y_n}}|^{{\alpha}-1}{\Delta}^2{_{y_n}}+q_n|y_{{\sigma}(n)}|^{{\beta}-1}y_{{\sigma}(n)}=o,\;n{\in}\mathbb{N}$$ into six disjoint classes according to their asymptotic behavior, and then they obtain necessary and sufficient conditions for the existence of solutions in these classes. Examples are inserted to illustrate the results.

  • PDF

OSCILLATION OF SUB LINEAR DIFFERENCE EQUATIONS WITH POSITIVE NEUTRAL TERM

  • LI QIAOLUAN;WANG CHUNGIAO;LI FANG;LIANG HAIYAN;ZHANG ZHENGUO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.305-314
    • /
    • 2006
  • In this paper, we consider the oscillation of first order sublinear difference equation with positive neutral term $\Delta(\chi(n)+p(n)\chi(\tau(n)))+f(n,\chi(g1(n)),\cdots,\chi(gm(n)))=0$. We obtain necessary and sufficient conditions for the solutions of this equation to be oscillatory.

Development of a Natural Ventilation Model in a Single Zone Building with Large Openings (큰 개구부를 가진 단일구획 빌딩에서의 자연환기 모델의 개발)

  • Cho, Seok-Ho
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.359-369
    • /
    • 2018
  • A model has been developed to predict natural ventilation in a single zone building with large openings. This study first presents pressure-based equations on natural ventilation, that include the combined effect of wind and thermal buoyancy. Moreover, the concept of neutral pressure level(NPL) is introduced to consider the two-way flow through a large opening. The total pressure differences across the opening and the NPL are calculated, and nonlinear equations are solved to find the zonal pressure to satisfy mass conservation. For this analysis, an iterative technique of successively approximating the zonal pressure is used. The results of applying this study model to several simple cases are as follows. When there is no wind and only the stack effect is caused, a one-way flow occurs in both the top and bottom openings in the case of two openings of equal-area, and a one-way flow occurs in the top opening; however, a two-way flow occurs in the bottom opening in the case of two openings of unequal-area. When there is a wind effect, regardless of whether the outside air temperature is lower or higher than the indoor air temperature, air flows into the room through the bottom opening and out of the room through the top opening. As the wind velocity increases, the wind effect appears to be more influential than the stack effect owing to the temperature difference.

Simulation of the Dispersion of Air Pollutants in the Shihwa Area (시화지구의 대기오염물질 확산에 관한 전산모사)

  • Song, Eun-Seok;Yoo, Jin-Bog;Kim, Byoung-Su;Yi, Sung-Chul;Hong, Min-Sun;Jang, Young-Kee
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.1
    • /
    • pp.35-48
    • /
    • 1998
  • Gaussian type models have limitations on predicting a detailed description of the near flow and pollution leads over complex terrains under neutral atmospheric conditions. Also, most models used recently have lack of ability to include atmospheric reactions. The model based on the numerical solution of the time-averaged Navier-Stokes equations and conservation equations needs to be developed to improve the limitations mentioned above. When the model was applied to the Shihwa area where the tracer experiment had been carried out, the simulation results have a great difference from the experimental results. There are two reasons that make the difference between the results by the model and the experiment. First, the Shihwa area is not a complex terrain. Second, meteorological data is insufficient. Therefore, the model should be applied to predict the dispersion of air pollutants over complex terrain rather than flat terrain in order that the model could be verified because the model was developed for the prediction of the dispersion over a complex terrain.

  • PDF

Onset of Slugging Criterion Based on Singular Point and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations of Two-Fluid Model

  • Sung, Chang-Kyung;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.299-310
    • /
    • 1996
  • A two-step approach has been used to obtain a new criterion for the onset of slug formation : (1) In the first step, a more general expression than the existing models for the onset of slug flow criterion has been derived from the analysis of singular points and neutral stability conditions of the transient one-dimensional two-phase flow equations of two-fluid model. (2) In the second step, introducing simplifications and incorporating a parameter into the general expression obtained in the first step to satisfy a number of physical conditions a priori specified, a new simple criterion for the onset of slug flow has been derived. Comparisons of the present model with existing models and experimental data show that the present model agrees very closely with Taitel & Dukler's model and experimental data in horizontal pipes. In an inclined pipe ($\theta$ =50$^{\circ}$), however, the difference between the predictions of the present model and those of existing models is appreciably large and the present model gives the best agreement with Ohnuki et al.'s data.

  • PDF

Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory

  • El-Hassar, Sidi Mohamed;Benyoucef, Samir;Heireche, Houari;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.357-386
    • /
    • 2016
  • In this research work, an exact analytical solution for thermal stability of solar functionally graded rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown displacement functions are used in the present theory against five unknown displacement functions used in the corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for the present theory, demonstrating its importance and accuracy in comparison to other theories.

Determination and prediction of digestible and metabolizable energy concentrations in byproduct feed ingredients fed to growing pigs

  • Son, Ah Reum;Park, Chan Sol;Kim, Beob Gyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.546-553
    • /
    • 2017
  • Objective: An experiment was conducted to determine digestible energy (DE) and metabolizable energy (ME) of different byproduct feed ingredients fed to growing pigs, and to generate prediction equations for the DE and ME in feed ingredients. Methods: Twelve barrows with an initial mean body weight of 31.8 kg were individually housed in metabolism crates that were equipped with a feeder and a nipple drinker. A $12{\times}10$ incomplete Latin square design was employed with 12 dietary treatments, 10 periods, and 12 animals. A basal diet was prepared to mainly contain the corn and soybean meal (SBM). Eleven additional diets were formulated to contain 30% of each test ingredient. All diets contained the same proportion of corn:SBM ratio at 4.14:1. The difference procedure was used to calculate the DE and ME in experimental ingredients. The in vitro dry matter disappearance for each test ingredient was determined. Results: The DE and ME values in the SBM sources were greater (p<0.05) than those in other ingredients except high-protein distillers dried grains. However, DE and ME values in tapioca distillers dried grains (TDDG) were the lowest (p<0.05). The most suitable regression equations for the DE and ME concentrations (kcal/kg on the dry matter [DM] basis) in the test ingredients were: $DE=5,528-(156{\times}ash)-(32.4{\times}neutral\;detergent\;fiber\;[NDF])$ with root mean square error = 232, $R^2=0.958$, and p<0.001; $ME=5,243-(153 ash)-(30.7{\times}NDF)$ with root mean square error = 277, $R^2=0.936$, and p<0.001. All independent variables are in % on the DM basis. Conclusion: The energy concentrations were greater in the SBM sources and were the least in the TDDG. The ash and NDF concentrations can be used to estimate the energy concentrations in the byproducts from oil-extraction and distillation processes.