• Title/Summary/Keyword: neurotrophic factor

Search Result 219, Processing Time 0.039 seconds

Spinal α2 Adrenoceptor and Antiallodynic Effect by Clonidine after Chronic Administration of 4-Methylcatechol in Neuropathic Rat Pain Model (신경병증성 통증모델에서 신경영양인자 유도물질의 반복 투여가 척수 아드레날린계에 미치는 영향)

  • Chung, Kyu Yeon;Shin, Sang Wook;Choi, Bong Soo;Kim, Chul Hong;Kim, Kyung Hoon;Kim, Hae Kyu
    • The Korean Journal of Pain
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 2008
  • Background: The adrenergic nervous system in the spinal cord contributes to the development of neuropathic pain after nerve injury. Brain derived neurotrophic factor may facilitate the sympathetic change in the spinal cord and influence the state of neuropathic pain. We probed the effect of chronic repetitive administration of systemic 4-methylcatechol, which is known to be a neurotrophic factor inducer, in a spinal nerve ligation model. Methods: We made the rat neuropathic pain model by the ligation of the L5 spinal nerve. Intraperitoneal 4-methylcatechol ($10{\mu}g/kg$) or the same volume of saline wasadministrated twice daily just after the operation for 7 days. The tactile allodynia was measured by using von Frey filaments and its change was followed up from 3 days after SNL. The lumbosacral enlargement of the spinal cord was taken out and the mRNA contents of the ${\alpha}_2-adrenoceptor$ subtypes were measured by real time polymerase chain reaction and this was then compared with the control groups. The antiallodynic effect of intrathecal clonidine (3, 10, $30{\mu}g$) was evaluated and compared in the 4-methylcatechol treated rats and the control rats. Results: The expression of the ${\alpha}_{2A}$ and ${\alpha}_{2C}$ adrenoceptor subtypes did not change after 4-methylcatechol treatment. Intrathecal clonidine showed an earlier and better effect at the highest dose ($30{\mu}g$ intrathecal), but not with any other doses. Conclusions: Chronic intraperitoneal administration of 4-methylcatechol may improve the effect of intrathecal clonidine, but we could not prove the increase of ${\alpha}_{2A}$ and ${\alpha}_{2C}$ adrenoceptors in the spinal cord of 4-methylcatechol treated rats.

Effects of Treadmill Exercise on Memory and Hippocampal BDNF Expression in Streptozotocin-induced Diabetic Rats (트레드밀 운동이 당뇨흰쥐에서 기억력과 해마 BDNF 발현에 미치는 영향)

  • Lee, Hee-Hyuk;Yoon, Jin-Hwan;Kim, Seung-Hee
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1464-1471
    • /
    • 2007
  • Diabetes mellitus is a chronic metabolic disorder, leading to many complications including cognitive deficit. Regular exercise has often been recommended as a therapeutic maneuver to the diabetic patients for the prevention of secondary complications. In the present study, the effects of treadmill exercise on memory and brain-derived neurotrophic factor (BDNF) in the hippocampus of streptozotocin (STZ)-induced diabetic rats were investigated. Male SD rats, aged 6 weeks, were randomly assigned to the following three groups: control group(n=8), STZ-induced diabetic group(n=8), and STZ-induced diabetes and exercise group(n=8). Diabetes was induced by a single injection of STZ (50 mg/kg body weight). Treadmill running was conducted with duration and frequency of 30 minutes and 5 times per week, respectively, for 8 weeks. Memories were tested in the Morris water maze. Western blotting was performed to detect BDNF expression in the hippocampus. In this study, we found that compared to the control group, the STZ-induced diabetes group had a significantly impaired cognitive performance along with suppressed BDNF expression in the hippocampus and the exercise group had a higher cognitive function in diabetic rats. Therefore, the current findings of the study show that a treadmill running exercise can improve diabetes-induced impairment of cognitive function. And the improved cognitive function appears to be related to an alleviation in diabetes-induced BDNF expression in hippocampus.

Bacopa monnieri extract improves novel object recognition, cell proliferation, neuroblast differentiation, brain-derived neurotrophic factor, and phosphorylation of cAMP response element-binding protein in the dentate gyrus

  • Kwon, Hyun Jung;Jung, Hyo Young;Hahn, Kyu Ri;Kim, Woosuk;Kim, Jong Whi;Yoo, Dae Young;Yoon, Yeo Sung;Hwang, In Koo;Kim, Dae Won
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.239-247
    • /
    • 2018
  • Bacopa monnieri is a medicinal plant with a long history of use in Ayurveda, especially in the treatment of poor memory and cognitive deficits. In the present study, we hypothesized that Bacopa monnieri extract (BME) can improve memory via increased cell proliferation and neuroblast differentiation in the dentate gyrus. BME was administered to 7-week-old mice once a day for 4 weeks and a novel object recognition memory test was performed. Thereafter, the mice were euthanized followed by immunohistochemistry analysis for Ki67, doublecortin (DCX), and phosphorylated cAMP response element-binding protein (CREB), and western blot analysis of brain-derived neurotrophic factor (BDNF). BME-treated mice showed moderate increases in the exploration of new objects when compared with that of familiar objects, leading to a significant higher discrimination index compared with vehicle-treated mice. Ki67 and DCX immunohistochemistry showed a facilitation of cell proliferation and neuroblast differentiation following the administration of BME in the dentate gyrus. In addition, administration of BME significantly elevated the BDNF protein expression in the hippocampal dentate gyrus, and increased CREB phosphorylation in the dentate gyrus. These data suggest that BME improves novel object recognition by increasing the cell proliferation and neuroblast differentiation in the dentate gyrus, and this may be closely related to elevated levels of BDNF and CREB phosphorylation in the dentate gyrus.

Effect of Microcurrent Wave Superposition on Cognitive Improvement in Alzheimer's Disease Mice Model (알츠하이머 질환 마우스에서 중첩주파수를 활용한 미세전류가 인지능력 개선에 미치는 효과)

  • Kim, Min Jeong;Lee, Ah Young;Cho, Dong Shik;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.241-251
    • /
    • 2019
  • In the present study, we investigated the effect of microcurrent against cognitive impairment in Alzheimer's disease (AD) mice model. The cognitive impairment was induced by intracerebroventricularly injection of amyloid beta ($A{\beta}$) to ICR mouse brain, and four kinds of micorocurrent wave were applied to AD mice. We observed the improved cognitive ability in microcurrent-applied AD mice through novel object recognition test and Morris water maze test, compared to $A{\beta}$-injected control group. The contents of malondialdehyde generated by $A{\beta}$ in the brain were also reduced by microcurrent application. These effects of microcurrent were related to the modulation of $A{\beta}$ producing and brain-derived neurotrophic factor (BDNF). Microcurrent down-regulated ${\beta}$-secretase, presenilin 1, and presenilin 2 which were related amyloidogenic pathway, and up-regulated human brain-derived neurotrophic factor in the mice brain, especially Wave4 group [STEP FORM wave form (0, 1.5, 3, 5V), wave superposition]. These results suggest that microcurrent application could provide help for improvement learning and memory ability, at least partly.

Glial Cell Line-Derived Neurotrophic Factor, S-100 Protein and Synaptophysin Expression in Biliary Atresia Gallbladder Tissue

  • Gurunluoglu, Semra;Ceran, Canan;Gurunluoglu, Kubilay;Kocbiyik, Alper;Gul, Mehmet;Yildiz, Turan;Bag, Harika Gozukara;Gul, Semir;Tasci, Aytac;Bayrakci, Ercan;Akpinar, Necmettin;Cin, Ecem Serbest;Ates, Hasan;Demircan, Mehmet
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.2
    • /
    • pp.173-186
    • /
    • 2021
  • Purpose: Biliary atresia (BA) is a disease that manifests as jaundice after birth and leads to progressive destruction of the ductal system in the liver. The aim of this study was to investigate histopathological changes and immunohistochemically examine the expression of glial cell line-derived neurotrophic factor (GDNF), synaptophysin, and S-100 protein in the gallbladder of BA patients. Methods: The study included a BA group of 29 patients and a control group of 41 children with cholecystectomy. Gallbladder tissue removed during surgery was obtained and examined immunohistochemically and histopathologically. Tissue samples of both groups were immunohistochemically assessed in terms of GDNF, S-100 protein, and synaptophysin expression. Expression was classified as present or absent. Inflammatory activity assessment with hematoxylin and eosin staining and fibrosis assessment with Masson's trichrome staining were performed for tissue sample sections of both groups. Results: Ganglion cells were not present in gallbladder tissue samples of the BA group. Immunohistochemically, GDNF, synaptophysin, and S-100 expression was not detected in the BA group. Histopathological examination revealed more frequent fibrosis and slightly higher inflammatory activity in the BA than in the control group. Conclusion: We speculate that GDNF expression will no longer continue in this region, when the damage caused by inflammation of the extrahepatic bile ducts reaches a critical threshold. The study's findings may represent a missing link in the chain of events forming the etiology of BA and may be helpful in its diagnosis.

A Review of Exercise and Neural Plasticity (운동과 신경가소성에 대한 고찰)

  • Song, Ju-min
    • PNF and Movement
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2008
  • Purpose: The purpose of this study were to overview the effect of exercise on neural plasticity and the proteins related to neural plasticity. Results: Exercise increased levels of BDNF(brain-derived neurotrophic factor), Insulin-like growth factor-I (IGF-I), Synapsin, Synaptophysin, VEGF(vascular endothelial growth factor) and other growth factors, stimulate neurogenesis, increase resistance to brain insult and improve learning and mental performance. These proteins improved synaptic plasticity by directly affecting synaptic structure and potentiating synaptic strength, and by strengthening the underlying systems that support plasticity including neurogenesis, metabolism and vascular function. Conclusion: Exercise-induced structural and functional change by these proteins can effect on functional movement, cognition in healthy and brain injured people and animals.

  • PDF

Reparative, Neuroprotective and Anti-neurodegenerative Effects of Granulocyte Colony Stimulating Factor in Radiation-Induced Brain Injury Model

  • Gokhan Gurkan;Ozum Atasoy;Nilsu Cini;Ibrahim Halil Sever;Bahattin Ozkul;Gokhan Yaprak;Cansin Sirin;Yigit Uyanikgil;Ceren Kizmazoglu;Mumin Alper Erdogan;Oytun Erbas
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.511-524
    • /
    • 2023
  • Objective : This animal model aimed to compare the rat group that received brain irradiation and did not receive additional treatment (only saline) and the rat group that underwent brain irradiation and received Granulocyte colony stimulating factor (G-CSF) treatment. In addition, the effects of G-CSF on brain functions were examined by magnetic resonance (MR) imaging and histopathologically. Methods : This study used 24 female Wistar albino rats. Drug administration (saline or G-CSF) was started at the beginning of the study and continued for 15 days after whole-brain radiotherapy (WBRT). WBRT was given on day 7 of the start of the study. At the end of 15 days, the behavioral tests, including the three-chamber sociability test, open field test, and passive avoidance learning test, were done. After the behavioral test, the animals performed the MR spectroscopy procedure. At the end of the study, cervical dislocation was applied to all animals. Results : G-CSF treatment positively affected the results of the three-chamber sociability test, open-space test and passive avoidance learning test, cornu Ammonis (CA) 1, CA3, and Purkinje neuron counts, and the brain levels of brain-derived neurotrophic factor and postsynaptic density protein-95. However, G-CSF treatment reduced the glial fibrillary acidic protein immunostaining index and brain levels of malondialdehyde, tumor necrosis factor-alpha, nuclear factor kappa-B, and lactate. In addition, on MR spectroscopy, G-CSF had a reversible effect on brain lactate levels. Conclusion : In this first designed brain irradiation animal model, which evaluated G-CSF effects, we observed that G-CSF had reparative, neuroprotective and anti-neurodegenerative effects and had increased neurotrophic factor expression, neuronal counts, and morphology changes. In addition, G-CSF had a proven lactate-lowering effect in MR spectroscopy and brain materials.

Effects of Chaenomeles speciose Nakai on Scopolamine Induced Memory Impaired Mouse Model (스코폴라민으로 유도한 기억력 장애 동물모델에서 명자나무(Chaenomeles speciose Nakai) 과실 추출물의 효과)

  • Kim, Jihyun;Kim, Ranhee;Kim, Jaehoon;Lim, Mi Kyung;Lee, Sang Ho;Han, Eun Hye;Jang, Dae Sik;Ryu, Jong Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.4
    • /
    • pp.253-259
    • /
    • 2019
  • Chaenomeles speciose Nakai (CSP) or Chaenomeles sinensis Koehne (CSS) (Rosaceae) has been used, traditionally, to treat muscle problems and gastric dampness in eastern Asia countries. Therefore, many studies have focused on investigating its active compounds and effects on muscle pain, arthritis and gastro-intestinal diseases. Recently, several studies reported that CSS extract degrade amyloid plaques and enhance synaptic acetylcholine level in vivo and in vitro. Although these two Chaenomeles species are used without differences, CSP is reported to contains more phenolic compounds which are known to enhance memory. Therefore, in this study, we investigated the memory ameliorating effects of CSP by employing the passive avoidance test, Y-maze task and novel object recognition test. CSP (30 or 100 mg/kg) ameliorated the declined memory induced by scopolamine injection and enhanced the brain-derived neurotrophic factor (BDNF) levels along with post synaptic density protein 95 (PSD 95) levels at the hippocampus of the scopolamine-injected mouse brain. These results suggested that CSP alleviates the cognition declines caused by cholinergic blockade via enhancing BDNF levels and PSD 95, and that it would enhance memory formation and be useful for treating memory declines.