• Title/Summary/Keyword: neurotrophic factor

Search Result 219, Processing Time 0.03 seconds

Exploring the role and mechanisms of diallyl trisulfide and diallyl disulfide in chronic constriction-induced neuropathic pain in rats

  • Wang, Gang;Yang, Yan;Wang, Chunfeng;Huang, Jianzhong;Wang, Xiao;Liu, Ying;Wang, Hao
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.216-225
    • /
    • 2020
  • Background: Garlic oil is a rich source of organosulfur compounds including diallyl disulfide and diallyl trisulfide. There have been studies showing the neuroprotective actions of these organosulfur compounds. However, the potential of these organosulfur compounds in neuropathic pain has not been explored. The present study was aimed at investigating the pain attenuating potential of diallyl disulfide and diallyl trisulfide in chronic constriction injury (CCI)-induced neuropathic pain in rats. The study also explored their pain-attenuating mechanisms through modulation of H2S, brain-derived neurotrophin factor (BDNF) and nuclear factor erythroid 2-related factor 2 (Nrf2). Methods: The rats were subjected to CCI injury by ligating the sciatic nerve in four places. The development of neuropathic pain was measured by assessing mechanical hyperalgesia (Randall-Selittotest), mechanical allodynia (Von Frey test), and cold allodynia (acetone drop test) on 14th day after surgery. Results: Administration of diallyl disulfide (25 and 50 mg/kg) and diallyl trisulfide (20 and 40 mg/kg) for 14 days led to a significant reduction in pain in CCI-subjected rats. Moreover, treatment with these organosulfur compounds led to the restoration of H2S, BDNF and Nrf2 levels in the sciatic nerve and dorsal root ganglia. Co-administration of ANA-12 (BDNF blocker) abolished pain attenuating actions as well as BDNF and the Nrf2 restorative actions of diallyl disulfide and diallyl trisulfide, without modulating H2S levels. Conclusions: Diallyl disulfide and diallyl trisulfide have the potential to attenuate neuropathic pain in CCI-subjected rats possibly through activation of H2S-BDNF-Nrf2 signaling pathway.

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal;Tepekoy, Filiz;Yilmaz, Irem;Subasi, Cansu;Kabatas, Serdar
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.

Effect of Single Growth Factor and Growth Factor Combinations on Differentiation of Neural Stem Cells

  • Choi, Kyung-Chul;Yoo, Do-Sung;Cho, Kyung-Sock;Huh, Pil-Woo;Kim, Dal-Soo;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.6
    • /
    • pp.375-381
    • /
    • 2008
  • Objective : The effects on neural proliferation and differentiation of neural stem cells (NSC) of basic fibroblast growth factor-2 (bFGF). insulin growth factor-I (IGF-I). brain-derived neurotrophic factor (BDNF). and nerve growth factor (NGF) were assessed. Also, following combinations of various factors were investigated : bFGF+IGF-I, bFGF+BDNF, bFGF+NGF, IGF-I+BDNF, IGF-I+NGF, and BDNF+NGF. Methods : Isolated NSC of Fisher 344 rats were cultured with individual growth factors, combinations of factors, and no growth factor (control) for 14 days. A proportion of neurons was analyzed using $\beta$-tubulin III and NeuN as neural markers. Results : Neural differentiations in the presence of individual growth factors for $\beta$-tubulin III-positive cells were : BDNF, 35.3%; IGF-I, 30.9%; bFGF, 18.1%; and NGF, 15.1%, and for NeuN-positive cells was : BDNF, 34.3%; bFGF, 32.2%; IGF-I, 26.6%; and NGF, 24.9%. However, neural differentiations in the absence of growth factor was only 2.6% for $\beta$-tubulin III and 3.1% for NeuN. For $\beta$-tubulin III-positive cells, neural differentiations were evident for the growth factor combinations as follows : bFGF+IGF-I, 73.1 %; bFGF+NGF, 65.4%; bFGF+BDNF, 58.7%; BDNF+IGF-I, 52.2%; NGF+IGF-I, 40.6%; and BDNF+NGF, 40.0%. For NeuN-positive cells : bFGF+IGF-I, 81.9%; bFGF+NGF, 63.5%; bFGF+BDNF, 62.8%; NGF+IGF-I, 62.3%; BDNF+NGF, 56.3%; and BDNF+IGF-I, 46.0%. Significant differences in neural differentiation were evident for single growth factor and combination of growth factors respectively (p<0.05). Conclusion : Combinations of growth factors have an additive effect on neural differentiation. The most prominent neural differentiation results from growth factor combinations involving bFGF and IGF-I. These findings suggest that the combination of a mitogenic action of bFGF and post-mitotic differentiation action of IGF-I synergistically affects neural proliferation and NSC differentiation.

Effects of Haein-tang(Hairen-tang) Extract on Functional Recovery in Sciatic Nerve and c-Fos Expression in the Brain after Crushed Sciatic Nerve Injury in Rats (해인탕 추출물이 흰쥐 좌골신경 손상 모델에서 기능회복과 뇌의 c-Fos 발현에 미치는 영향)

  • Eun, Young-Joon;Song, Yun-Kyung;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.125-142
    • /
    • 2011
  • Objectives : Peripheral nerve injuries are commonly encountered clinical problems and often result in severe functional deficits. The purpose of this study was to evaluate the effects of Haein-tang(Hairen-tang) extract on functional recovery and pain release in the sciatic nerve after crushed sciatic nerve injury in rats. Methods : 1. Sciatic functional index(SFI) were performed on functional recovery. 2. c-Fos immunohistochemistry were performed on c-Fos expressions in the paraventricular nucleus(PVN) and ventrolateral periaqueductal gray(vIPAG). 3. Neurofilament immunohistochemistry were performed on neurofilament regeneration. 4. Western blot were performed on brain-derived neurotrophic factor(BDNF) and nerve growth factor(NGF) expression. Results : 1. Haein-tang(Hairen-tang) extract significantly enhanced the SFI value in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 2. Haein-tang(Hairen-tang) extract significantly suppressed the sciatic nerve injury-induced increment of c-Fos expressions in the PVN and vIPAG in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 3. Haein-tang(Hairen-tang) extract significantly increased neurofilament expression in the sciatic nerve injury and 50 mg/kg, 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. 4. Haein-tang(Hairen-tang) extract significantly controled the sciatic nerve injury-induced increment of BDNF and NGF expressions in the sciatic nerve injury and 100 mg/kg, 200 mg/kg Haein-tang(Hairen-tang)-treated group. Conclusions : These results suggest that Haein-tang(Hairen-tang) treatment after sciatic nerve injury is effective for the functional recovery by enhancing of axonal regeneration and suppressing of pain.

The Effects of 12 Weeks Combined Exercise on Brain Nerve Growth Factor, Inflammation-Related Factor in Obese High School Girls (12주 복합운동이 비만 여고생의 뇌신경세포 생성인자 및 염증인자에 미치는 영향)

  • Seo, Jeongpyo;Heo, Junhoe;Kim, Hyunjun;Park, Jangjun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.159-168
    • /
    • 2020
  • Purpose : To provide data on exercise prescription for obesity management and prevention of cardiovascular disease in girl's high school and to prepare basic data for more effective exercise program for lifestyle improvement and prevention of lifestyle-related diseases. This study examines the effects on brain nerve growth factor and inflammatory factors, and the relationship between obesity factor and brain neuron cell production factor and inflammatory factor changes by complex exercise. Methods : The subjects of the study were obese students with a body fat percentage of 30 % or higher after obtaining body fat percentage of high school girls in C-city. Among them, 20 students who wanted to participate in the program of this study and did not participate in special exercise and diet therapy within the last 6 months were radio-sampled into groups of exercise group and control group, but attendance rate was low and The final exercise group (9) and control group (9) were measured, except for one student who did not respond. Results : Analysis of the range of variation in body composition, BMI, lean body mass, and the interaction between the groups showed significant differences (p<.05). TC, TG, HDL-C, and LDL-C as variables of blood lipids, TC and TG were not significantly different and TG was significantly different (p<.05) in interactions. HDL-C showed a significant difference (p<.01) in interactions, an increase in exercise group, and a significant decrease in control group (p<.05). There was a significant difference (p<.05) in BDNF interaction, an increase in the exercise group and a decrease in the control group, but no significant difference. NGF tended to increase in both exercise and control groups. IL-6 had a significant difference in timing (p<.05) and significantly decreased (p<.01) in the exercise group, and TNF-α interacted with timing (p<.05), and a significant increase in the control group. Conclusion : This study confirmed 12-week compound exercise program was effective in increasing the expression of basal fitness or CNS factor, but not enough to actually improve brain function. Fat mass and obesity are also affecting vascular inflammatory factors.

Genomic Organization and Promoter Characterization of the Murine Glial Cell-derived Neurotrophic Factor Inducible Transcription Factor (mGIF) Gene (생쥐 신경교세포 유래 신경영양인자 유도성 전사인자 (mGIF) 유전자의 유전체 구조 및 프로모터 특성 분석)

  • Kim, Ok-Soo;Kim, Yong-Man;Kim, Nam-Young;Lee, Eo-Jin;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.167-173
    • /
    • 2007
  • To study the transcriptional mechanisms by which expression of the murine glial cell-derived neurotrophic factor inducible transcription factor (mGIF) gene is regulated, a murine genomic clone was iso-lated using a mGIF cDNA as probe. A 13-kb genomic fragment, which comprises 4-kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in G+C content, and has multiple putative binding sites for the transcription factor Spl. The mGIF gene also has consensus sequences for AP2 binding sites. The transcriptional activity of five deletion mutants of a 2.1-kb fragment was analyzed by modulating transcription of the heterologous luciferase gene in the promoterless plasmid pGL2-Basic. All mutants showed significant transcriptional activity in the murine neuroblastoma cell line NB41A3. Transient expression assays suggested the presence of a positive regulator between -213 and -129 while a negative regulator was found in the region between -806 and -214. Relatively strong transcriptional activity was observed in neuronal NB41A3, glial C6 cells and hepatic HepG2, but very weak activity in skeletal muscle C2C12 cells. These findings confirm the tissue-specific activity of the mGIF promoter and suggest that this gene shares structural and functional similarities with the dopamine receptor genes that it regulates.

Panax ginseng exerts antidepressant-like effects by suppressing neuroinflammatory response and upregulating nuclear factor erythroid 2 related factor 2 signaling in the amygdala

  • Choi, Jong Hee;Lee, Min Jung;Jang, Minhee;Kim, Hak-Jae;Lee, Sanghyun;Lee, Sang Won;Kim, Young Ock;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.107-115
    • /
    • 2018
  • Background: Depression is one of the most commonly diagnosed neuropsychiatric diseases, but the underlying mechanism and medicine are not well-known. Although Panax ginseng has been reported to exert protective effects in various neurological studies, little information is available regarding its antidepressant effects. Methods: Here, we examined the antidepressant effect and underlying mechanism of P. ginseng extract (PGE) in a chronic restraint stress (CRS)-induced depression model in mice. Results: Oral administration of PGE for 14 d decreased immobility (depression-like behaviors) time in forced swim and tail suspended tests after CRS induction, which corresponded with attenuation of the levels of serum adrenocorticotropic hormone and corticosterone, as well as attenuated c-Fos expression in the amygdala. PGE enhanced messenger RNA expression level of brain-derived neurotrophic factor but ameliorated microglial activation and neuroinflammation (the level of messenger RNA and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase) in the amygdala of mice after CRS induction. Interestingly, 14-d treatment with celecoxib, a selective cyclooxygenase-2 inhibitor, and $N_{\omega}$-nitro-L-arginine methyl ester hydrochloride, a selective inducible nitric oxide synthase inhibitor, attenuated depression-like behaviors after CRS induction. Additionally, PGE inhibited the upregulation of the nuclear factor erythroid 2 related factor 2 and heme oxygenase-1 pathways. Conclusion: Taken together, our findings suggest that PGE exerts antidepressant-like effect of CRS-induced depression by antineuroinflammatory and antioxidant (nuclear factor erythroid 2 related factor 2/heme oxygenase-1 activation) activities by inhibiting the hypothalamo-pituitary-adrenal axis mechanism. Further studies are needed to evaluate the potential of components of P. ginseng as an alternative treatment of depression, including clinical trial evaluation.

Protective Effects of Silibinin and Its Possible Mechanism of Action in Mice Exposed to Chronic Unpredictable Mild Stress

  • Yan, Wen-Jing;Tan, Ying-Chun;Xu, Ji-Cheng;Tang, Xian-Ping;Zhang, Chong;Zhang, Peng-Bo;Ren, Ze-Qiang
    • Biomolecules & Therapeutics
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2015
  • Silibinin, a natural flavonoid antioxidant isolated from extracts of the milk thistle herb, has recently been identified as having anti-hepatotoxic and anticancer properties. In this paper, we investigated the effects of silibinin on behavior and neuroplasticity in mice subjected to chronic unpredictable mild stress (CUMS). After 5 consecutive weeks of CUMS, the mice were treated with silibinin (100 mg/kg, 200 mg/kg and 400 mg/kg by oral gavage) for 3 consecutive weeks. The results showed that silibinin administration significantly alleviated the CUMS-induced depressive-like behavior, including the total number of squares crossed and the frequency of rearing in the open field test, the immobility time in the tail suspension test and the forced swimming test. Furthermore, silibinin treatment increased the levels of brain-derived neurotrophic factor (BDNF), serotonin (5-HT) and norepinephrine (NE) in the prefrontal cortex and hippocampus. Our study provides new insight into the protective effects of silibinin on the depressive status of CUMS mice, specifically by improving neuroplasticity and neurotransmission.

Epac2 contributes to PACAP-induced astrocytic differentiation through calcium ion influx in neural precursor cells

  • Seo, Hyunhyo;Lee, Kyungmin
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.128-133
    • /
    • 2016
  • Astrocytes play a critical role in normal brain functions and maintaining the brain microenvironment, and defects in astrocytogenesis during neurodevelopment could give rise to severe mental illness and psychiatric disorders. During neuro-embryogenesis, astrocytogenesis involves astrocytic differentiation of neural precursor cells (NPCs) induced by signals from ciliary neurotrophic factor (CNTF) or pituitary adenylate cyclase-activating peptide (PACAP). However, in contrast to the CNTF signaling pathway, the exact mechanism underlying astrocytic differentiation induced by PACAP is unknown. In the present study, we aimed to verify a signaling pathway specific to PACAP-induced astrocytogenesis, using exchange protein directly activated by cAMP2 (Epac2)-knockout mice. We found that PACAP could trigger astrocytic differentiation of NPCs via Epac2 activation and an increase in the intracellular calcium concentration via a calcium ion influx. Taken together, we concluded that astrocytogenesis stimulated by PACAP occurs through a novel signaling pathway independent from CNTF-JAK/STAT signaling, that is the well-known pathway of astrocytogenesis.

Wogonin Attenuates Hippocampal Neuronal Loss and Cognitive Dysfunction in Trimethyltin-Intoxicated Rats

  • Lee, Bombi;Sur, Bongjun;Cho, Seong-Guk;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.328-337
    • /
    • 2016
  • We examined whether wogonin (WO) improved hippocampal neuronal activity, behavioral alterations and cognitive impairment, in rats induced by administration of trimethyltin (TMT), an organotin compound that is neurotoxic to these animals. The ability of WO to improve cognitive efficacy in the TMT-induced neurodegenerative rats was investigated using a passive avoidance test, and the Morris water maze test, and using immunohistochemistry to detect components of the acetylcholinergic system, brain-derived neurotrophic factor (BDNF), and cAMP-response element-binding protein (CREB) expression. Rats injected with TMT showed impairments in learning and memory and daily administration of WO improved memory function, and reduced aggressive behavior. Administration of WO significantly alleviated the TMT-induced loss of cholinergic immunoreactivity and restored the hippocampal expression levels of BDNF and CREB proteins and their encoding mRNAs to normal levels. These findings suggest that WO might be useful as a new therapy for treatment of various neurodegenerative diseases.