• 제목/요약/키워드: neuroscience

검색결과 897건 처리시간 0.023초

Neuroadaptations Involved in Long-Term Exposure to ADHD Pharmacotherapies: Alterations That Support Dependence Liability of These Medications

  • Dela Pena, Ike C.;Ahn, Hyung-Seok;Shin, Chan-Young;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.9-20
    • /
    • 2011
  • Repeated administration of addictive drugs causes cellular and molecular changes believed to be the mechanism of pro-addictive behaviors. Neuroadaptations also take place with repeated administration of amphetamine, methylphenidate and atomoxetine, drugs for Attention Deficit Hyperactivity Disorders (ADHD), and it is speculated that these changes may serve as markers to demonstrate the dependence liability of these therapies. In this review, we enumerate the neuroadaptive changes in molecules associated with neuronal signaling and plasticity, as well as neuronal morphology wrought by repeated administration of ADHD medications. We provide the current perspective on the dependence liability of these therapies, and also suggest of some factors that need to be considered in future investigations, so that what is drawn from animal studies would be better consolidated with those known clinically.

The Human Brain and Information Science: Lessons from Popular Neuroscience

  • Sturges, Paul
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제3권1호
    • /
    • pp.19-29
    • /
    • 2013
  • Insights from the recent wealth of popular books on neuroscience are offered to suggest a strengthening of theory in information science. Information theory has traditionally neglected the human dimension in favour of 'scientific' theory often derived from the Shannon-Weaver model. Neuroscientists argue in excitingly fresh ways from the evidence of case studies, non-intrusive experimentation and the measurements that can be obtained from technologies that include electroencephalography, positron emission tomography (PET), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). The way in which the findings of neuroscience intersect with ideas such as those of Kahneman on fast and slow thinking and Csikszentmihalyi on flow, is tentatively explored as lines of connection with information science. It is argued that the beginnings of a theoretical underpinning for current web-based information searching in relation to established information retrieval methods can be drawn from this.

LRRK2 and membrane trafficking: nexus of Parkinson's disease

  • Hur, Eun-Mi;Jang, Eun-Hae;Jeong, Ga Ram;Lee, Byoung Dae
    • BMB Reports
    • /
    • 제52권9호
    • /
    • pp.533-539
    • /
    • 2019
  • Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD.

Psychopharmacological Profile of the Water Extract of Gardenia jasminoides and Its Constituents, Genipin and Geniposide, in Mice

  • Choi, Ji-Young;Pena, Ike Dela;Choi, Jong-Hyun;Yoon, Seo-Young;Yim, Dong-Sool;Lee, Yong-Soo;Ko, Kwang-Ho;Shin, Chan-Young;Ryu, Jong-Hoon;Kim, Won-Ki;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제16권2호
    • /
    • pp.118-125
    • /
    • 2008
  • Gardenia jasminoides (G. jasminoides) is traditionally used to treat insomnia, jaundice, emotional disorders, hepatic disease, and inflammatory disease. Previously, we found that geniposide and the water extract of G. jasminoides increased $Cl^-$ influx in neuroblastoma. Here we examined the sychopharmacological activities of G. jasminoides and its constituents. G. jasminoides extract was orally administered at 100 and 200 mg/kg, and genipin and geniposide were intraperitoneally injected at 2, 10, and 20 mg/kg. G. jasminoides extract (200 mg/kg) significantly decreased total open field activity but increased rearing activity in the center of the open field, suggesting an increase in exploratory activity. Genipin and geniposide did not change open field activity, but geniposide (20 mg/kg) increased rearing activity in the central area. The extract (200 mg/kg) significantly decreased rotarod and wire-balancing activity, but genipin and geniposide did not. No compounds influenced thiopental-induced sleeping or electroshock-induced seizures. The extract (200 mg/kg) significantly increased staying time in the open arms of the elevated plus maze and the entry ratio into the open arms, and geniposide (20 mg/kg) also increased open arm entry. Electroshock stress decreased open arm activity, but the extract and geniposide (20 mg/kg) significantly reversed that effect. This results indicate that G. jasminoides extract and geniposide alleviated anxiety with greater efficacy in stressed animals than normal animals.

Gerbil의 전뇌허혈에 대한 대황의 신경보호효과 (Neuroprotecticve Effect of Rhei Rhizoma on Transient Global Ischemia in Gerbil)

  • Bum-Hoi, Kim;Hyuk-Sang, Jung;Ran, Won;Ji-Ho, Park;Chul-Hun, Kang;Nak-Won, Sohn
    • 대한한의학회지
    • /
    • 제23권3호
    • /
    • pp.74-84
    • /
    • 2002
  • 목적 : 본 실험에서는 gerbil을 이용한 전뇌허혈 동물모델에서 뇌허혈손상 직후 지연성 뇌손상에 대한 대황의 방어효과와 Apoptosis 과정중의 Bax와 Bcl-2 단백질에 대한 조절작용을 관찰하고, TUNEL 염색법을 통하여 대황이 gerbil hippocampus CAl영역의 pyramidal neuron의 세포사에 미치는 영향과 PCl2세포를 이용한 세포배양 모델에서의 대황의 신경방어 효과를 관찰하였다. 방법 : Mongolian gerbil의 총경동맥을 5분간 폐색하여 가역성 전뇌허혈을 유발시킨 후 대황의 전탕액을 하루에 한번 경구 투여하였다. 대황의 신경 보호 효과는 수술 7일 후에 cresyl violet으로 염색하여, 살아있는 신경 세포의 수를 세어 측정하였다. 또, 수술 3일 후에는 면역조직화학적 방범을 통하여 Bax. Bcl-2단백질의 발현과 대황의 신경보호 효과와의 관련성을 알아보았다. 결과: 가역적 전뇌허혈이 일어난 동물군의 경우 hippocampus의 CAl 영역에서 살아있는 신경세포의 수는 $51.0{\pm}2.5개{\;}/mm$에 불과하였으나, 그에 비해 수술 후 7일간 대황을 투여한 동물군은 $106.2{\pm}2.5개{\;}/mm$로 살아 있는 신경세포수가 크게 증가하였다. Apoptosis를 촉진하는 단백질인 Bax의 발현은 3일간 대황을 투여한 동물군의 경우 hippocampus의 CAl 영역에서 현저하게 저해되었고, Apoptosis를 억제하는 Bcl-2 단백질의 발현은 변화가 없었다. TUNEL assay를 통하여 살펴본 결과 대황 투여군의 apoptotic 신경세포사가 감소하였으며 이는 Bax protein의 발현과 유사한 양상을 나타내었다. 결론:대황이 Bax 단백질의 발현을 억제하여 상대적으로 Bax/Bcl-2 자연적 세포사를 억제하여 Mogolian gerbil의 가역성 전뇌허혈 모델에서 신경보호효과를 나타내는 것으로 사료된다.

  • PDF

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity

  • Jalin, Angela M.A. Anthony;Lee, Jae-Chul;Cho, Geum-Sil;Kim, Chunsook;Ju, Chung;Pahk, Kisoo;Song, Hwa Young;Kim, Won-Ki
    • Biomolecules & Therapeutics
    • /
    • 제23권6호
    • /
    • pp.531-538
    • /
    • 2015
  • Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusionevoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-$1{\beta}$ in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-${\kappa}B$, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of $I{\kappa}B$. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions.