DOI QR코드

DOI QR Code

Neuroadaptations Involved in Long-Term Exposure to ADHD Pharmacotherapies: Alterations That Support Dependence Liability of These Medications

  • Dela Pena, Ike C. (Uimyung Research Institute for Neuroscience, Sahmyook University) ;
  • Ahn, Hyung-Seok (Uimyung Research Institute for Neuroscience, Sahmyook University) ;
  • Shin, Chan-Young (Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University) ;
  • Cheong, Jae-Hoon (Uimyung Research Institute for Neuroscience, Sahmyook University)
  • Received : 2010.10.18
  • Accepted : 2010.11.24
  • Published : 2011.01.31

Abstract

Repeated administration of addictive drugs causes cellular and molecular changes believed to be the mechanism of pro-addictive behaviors. Neuroadaptations also take place with repeated administration of amphetamine, methylphenidate and atomoxetine, drugs for Attention Deficit Hyperactivity Disorders (ADHD), and it is speculated that these changes may serve as markers to demonstrate the dependence liability of these therapies. In this review, we enumerate the neuroadaptive changes in molecules associated with neuronal signaling and plasticity, as well as neuronal morphology wrought by repeated administration of ADHD medications. We provide the current perspective on the dependence liability of these therapies, and also suggest of some factors that need to be considered in future investigations, so that what is drawn from animal studies would be better consolidated with those known clinically.

Keywords

References

  1. Ackerman, J. M. and White, F. J. (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci. Lett. 117, 181-187. https://doi.org/10.1016/0304-3940(90)90141-U
  2. Adriani, W., Leo, D., Greco, D., Rea, M., di Porzio, U., Laviola, G. and Perrone-Capano, C. (2006) Methylphenidate administration to adolescent rats determines plastic changes in reward-related behavior and striatal gene expression. Neuropsychopharmacol. 31, 1946-1956. https://doi.org/10.1038/sj.npp.1300962
  3. Amini, B., Yang, P. B., Swann, A. C. and Dafny, N. (2004) Differential locomotor responses in male rats from three strains to acute methylphenidate. Int. J. Neurosci. 114, 1063-1083. https://doi.org/10.1080/00207450490475526
  4. Andersen, S. L., LeBlanc, C. J. and Lyss, P. J. (2001) Maturational increases in c-fos expression in the ascending dopamine systems. Synapse 41, 345-350. https://doi.org/10.1002/syn.1091
  5. Andersen, S. L., Arvanitogiannis, A., Pliakas, A. M., LeBlanc, C. and Carlezon, W. A. Jr. (2002) Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat. Neurosci. 5, 13-14. https://doi.org/10.1038/nn777
  6. Arnsten A. F. (2006) Stimulants: therapeutic actions in ADHD. Neuropsychopharmacol. 31, 2376-2383. https://doi.org/10.1038/sj.npp.1301164
  7. Askenasy, E. P., Taber, K. H., Yang, P. B. and Dafny, N. (2007) Methylphenidate (Ritalin): behavioral studies in the rat. Intern. J. Neurosci. 117, 757-794. https://doi.org/10.1080/00207450600910176
  8. Banerjee, P. S., Aston, J., Khundakar, A. A. and Zetterstrom, T. S. (2009) Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediateearly gene arc in the juvenile and adult brain Eur. J. Neurosci. 29, 465-476. https://doi.org/10.1111/j.1460-9568.2008.06601.x
  9. Barkley, R. A., Fischer, M., Smallish, L. and Fletcher, K. (2003) Does the treatment of attention-defi cit/hyperactivity disorder with stimulants contribute to drug use/abuse? A 13-year prospective study. Pediatrics 111, 97-109. https://doi.org/10.1542/peds.111.1.97
  10. Barron, E., Yang, P. B., Swann, A. C. and Dafny, N. (2009) Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin). Int. J. Neurosci. 119, 40-58. https://doi.org/10.1080/00207450802330546
  11. Beitner-Johnson, D., Guitart, X. and Nestler, E. J. (1992) Neurofi lament proteins and the mesolimbic dopamine system: common regulation by chronic morphine and chronic cocaine in the rat ventral tegmental area. J. Neurosci. 12, 2165-2176.
  12. Berke, J. D. and Hyman, S. E. (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515-532. https://doi.org/10.1016/S0896-6273(00)81056-9
  13. Biederman, J. and Faraone, S. V. (2005) Attention-deficit hyperactivity disorder. Lancet. 366, 237-248. https://doi.org/10.1016/S0140-6736(05)66915-2
  14. Biederman, J., Wigal, S. B., Spencer, T. J., McGough, J. J. and Mays, D. A. (2006) A post hoc subgroup analysis of an 18-day randomized controlled trial comparing the tolerability and effi cacy of mixed amphetamine salts extended release and atomoxetine in school-age girls with attention-deficit/hyperactivity disorder. Clin. Ther. 28, 280-293. https://doi.org/10.1016/j.clinthera.2006.02.008
  15. Bonci, A., Bernardi, G., Grillner, P. and Mercuri, N. B. (2003) The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction. Trends Pharmacol. Sci. 24, 172-177. https://doi.org/10.1016/S0165-6147(03)00068-3
  16. Bramham, C. R. and Messaoudi, E. (2005). BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76, 99-125. https://doi.org/10.1016/j.pneurobio.2005.06.003
  17. Brandon, C. L. and Steiner, H. (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur. J. Neurosci. 18, 1584-1592. https://doi.org/10.1046/j.1460-9568.2003.02892.x
  18. Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., Morin, S. M., Gehlert, D. R. and Perry, K. W. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacol. 27, 699-711. https://doi.org/10.1016/S0893-133X(02)00346-9
  19. Carlezon, W. A. Jr. and Nestler, E. J. (2002) Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci. 25, 610-615. https://doi.org/10.1016/S0166-2236(02)02289-0
  20. Chao, J. and Nestler, E. J. (2004) Molecular neurobiology of drug addiction. Annu. Rev. Med. 55, 113-132. https://doi.org/10.1146/annurev.med.55.091902.103730
  21. Chase, T. D., Brown, R. E., Carrey, N., Wilkinson, M., Chase, T. D., Brown, R. E., Carrey, N. and Wilkinson, M. (2003) Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. Neuroreport 14, 769-772. https://doi.org/10.1097/00001756-200304150-00022
  22. Chase, T. D., Carrey, N., Brown, R. E. and Wilkinson, M. (2005a) Methylphenidate regulates c-fos and fosB expression in multiple regions of the immature rat brain. Brain Res. Dev. Brain Res. 156, 1-12. https://doi.org/10.1016/j.devbrainres.2005.01.011
  23. Chase, T. D., Carrey, N., Brown, R. E. and Wilkinson, M. (2005b) Methylphenidate differentially regulates c-fos and fosB expression in the developing rat striatum. Dev. Brain Res. 157, 181-191. https://doi.org/10.1016/j.devbrainres.2005.04.003
  24. Chase, T., Carrey, N., Soo, E. and Wilkinson, M. (2007) Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum. Neurosci. 144, 969-984. https://doi.org/10.1016/j.neuroscience.2006.10.035
  25. Commons, K. G. (2010) Neuronal pathways linking substance P to drug addiction and stress. Brain Res. 1314, 175-182. https://doi.org/10.1016/j.brainres.2009.11.014
  26. Cotterly, L., Beverley, J. A., Yano, M. and Steiner, H. (2007) Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: Differential effects on zif 268 and homer 1a. Eur. J. Neurosci. 25, 3617-3628. https://doi.org/10.1111/j.1460-9568.2007.05570.x
  27. Daunais, J. B. and McGinty, J. F. (1994) Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs. Synapse 18, 35-45. https://doi.org/10.1002/syn.890180106
  28. de la Pena, I. C., Ahn, H. S., Choi, J. Y., Shin, C. Y., Ryu, J. H. and Cheong, J. H. (2011) Methylphenidate self-adminstration and conditioned place preference in an animal model of attention deficit hyperactivity disorder-the spontaneously hypertensive rat. Behav. Pharmacol. 22, 31-39. https://doi.org/10.1097/FBP.0b013e328342503a
  29. Everitt, B. J. and Robbins,T. W. (2005) Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 8, 1481-1489. https://doi.org/10.1038/nn1579
  30. Evans, C., Blackburn, D. and Butt, P. (2004) Use and abuse of methylphenidate in attention-deficit hyperactivity disorder. CPJ/RPC 137, 30-33.
  31. Faraone, S. V. and Biederman, J. (2005) What is the prevalence of adult ADHD? Results of a population screen of 966 adults. J. Atten. Dissord. 9, 384-391. https://doi.org/10.1177/1087054705281478
  32. Faraone, S. V., Wigal, S. B. and Hodgkins, P. (2007) Forecasting three-month outcomes in a laboratory school comparison of mixed amphetamine salts extended release (Adderall XR) and atomoxetine (Strattera) in school-aged children with ADHD. J. Atten. Disord. 11, 74-82. https://doi.org/10.1177/1087054706292196
  33. Fumagalli, F., Cattaneo, A., Caffi no, L., Ibba, M., Racagni, G., Carboni, E., Gennarelli, M. and Riva, M. A. (2010) Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: Comparison with methylphenidate. Pharmacol. Res. 62, 523-529. https://doi.org/10.1016/j.phrs.2010.07.009
  34. Gao, W. Y., Lee, T. H., King, G. R. and Ellinwood, E. H. (1998) Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychophamacol. 18, 222-232. https://doi.org/10.1016/S0893-133X(97)00132-2
  35. Gardier, A. M., Moratalla, R., Cuellar, B., Sacerdote, M., Guibert, B., Lebrec, H. and Graybiel, A. M. (2000) Interaction between the serotoninergic and dopaminergic systems in d-fenfl uramine-induced activation of cfos and jun B genes in rat striatal neurons. J. Neurochem. 74, 1363-1373.
  36. Gasior, M., Bergman, J., Kallman, M. J. and Paronis, C. A. (2005) Evaluation of the reinforcing effects of monoamine reuptake inhibitors under a concurrent schedule of food and i.v. drug delivery in rhesus monkeys. Neuropsychopharmacol. 30, 758-764.
  37. Goldman-Rakic, P. S. (1996) Cellular basis of working memory. Neuron 14, 477-485.
  38. Grimes, C. A. and Jope, R. S. (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65, 391-426. https://doi.org/10.1016/S0301-0082(01)00011-9
  39. Grimm, J. W., Lu, L., Hayashi, T., Hope, B. T., Su, T. P. and Shaham, Y. (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 23, 742-747.
  40. Guillin, O., Diaz, J., Carroll, P., Griffon, N., Schwartz, J. C. and Sokoloff, P. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature. 411, 86-89. https://doi.org/10.1038/35075076
  41. Heal, D. J., Cheetham, S. C. and Smith, S. L. (2009) The neuropharmacology of ADHD drugs in vivo: Insights on effi cacy and safety. Neuropharmacol. 57, 7-8.
  42. Hechtman, L. and Greenfi eld, B. (2003) Long-term use of stimulants in children with attention defi cit hyperactivity disorder: safety, efficacy, and long-term outcome. Paediatr. Drugs 5, 787-794. https://doi.org/10.2165/00148581-200305120-00002
  43. Heil, S. H., Holmes, H. W., Bickel, W. K., Higgins, S. T., Badger, G. J., Laws, H. F. and Faries, D. E. (2002) Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend. 67, 149-156. https://doi.org/10.1016/S0376-8716(02)00053-4
  44. Herges, S. and Taylor, D. A. (1998) Involvement of serotonin in the modulation of cocaine-induced locomotor activity in the rat. Pharmacol. Biochem. Behav. 59, 595-611. https://doi.org/10.1016/S0091-3057(97)00473-5
  45. Himelstein, J., Newcorn, J. H. and Halperin, J. M. (2000) The neurobiology of attention-deficit hyperactivity disorder. Front. Biosci. 5, D461-D478. https://doi.org/10.2741/Himelste
  46. Hiroi, N., Brown, J. R., Haile, C. N., Ye, H., Greenberg, M. E. and Nestler, E. J. (1997) FosB mutant mice: Loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects. Proc. Natl. Acad. Sci. USA. 94, 10397-10402. https://doi.org/10.1073/pnas.94.19.10397
  47. Hooks, M. S., Jones, G. H., Neill, D. B. and Justice, J. B. (1991) Individual differences in amphetamine sensitization: dose-dependent effects. Pharmacol. Biochem. Behav. 41, 203-210.
  48. Hope, B., Kosofsky, B., Hyman, S. E. and Nestler, E. J. (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA. 89, 5764-5768. https://doi.org/10.1073/pnas.89.13.5764
  49. Horner, K. A., Adams, D. H., Hanson, G. R. and Keefe, K. A. (2005) Blockade of stimulant-induced preprodynorphin mRNA expression in the striatal matrix by serotonin depletion. Neurosci. 131, 67-77. https://doi.org/10.1016/j.neuroscience.2004.10.030
  50. Hyman, S. E. (1996) Addiction to cocaine and amphetamine. Neuron 16, 901-904. https://doi.org/10.1016/S0896-6273(00)80111-7
  51. Hyman, S. E. and Malenka, R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695-703. https://doi.org/10.1038/35094560
  52. Jasinski, D. R., Faries, D. E., Moore, R. J., Schuh, L. M. and Allen, A. J. (2008) Abuse liability assessment of atomoxetine in a drug-abusing population. Drug Alcohol Depend. 95, 140-146. https://doi.org/10.1016/j.drugalcdep.2008.01.008
  53. Kalivas, P. W. (1993) Neurotransmitter regulation of dopamine neurons in ventral tegmental area. Brain Res. Rev. 18, 75-113. https://doi.org/10.1016/0165-0173(93)90008-N
  54. Kalivas, P. W. and Duffy, T. (1998) Repeated cocaine administration alters extracellular glutamate levels in the ventral tegmental area. J. Neurochem. 70, 1497-1502.
  55. Kalivas, P. W. and O’Brien, C. (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacol. 33, 166-180. https://doi.org/10.1038/sj.npp.1301564
  56. Kankaanpaa, A., Meririnne, E. and Seppala, T. (2002) 5-HT3 receptor antagonist MDL 72222 attenuates cocaine- and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat. Psychopharmacol. (Ber) 159, 341-350. https://doi.org/10.1007/s00213-001-0939-4
  57. Katusic, S. K., Barbaresi, W. J., Colligan, R. C., Weaver, A. L., Leibson, C. L. and Jacobsen, S. J. (2005) Psychostimulant treatment and risk for substance abuse among young adults with a history of attentiondefi cit/hyperactivity disorder: a population-based, birth cohort study. J. Child. Adolesc. Psychopharmacol. 15, 764-776. https://doi.org/10.1089/cap.2005.15.764
  58. Kemner, J. E., Starr, H. L., Ciccone, P. E., Hooper-Wood, C. G. and Crockett, R. S. (2005) Outcomes of OROSmethylphenidate compared with atomoxetine in childrenwith ADHD: a multi-center, randomized prospective study. Adv. Ther. 22, 498-512. https://doi.org/10.1007/BF02849870
  59. Kim, H. J., Park, S. H., Kyeong M. K., Ryu, J. H., Cheong, J. H. and Shin, C. Y. (2008) Ever increasing number of animal model systems for attention defi cit/hyperactivity disorder: attention please. Biomol. and Ther. 16, 312-319. https://doi.org/10.4062/biomolther.2008.16.4.312
  60. Kim, Y., Teylan, M. A., baron, M., Sands, A., Nairn, A. C. and Greengard, P. (2008) Methylphenidate-induced dendritic spine formation and fosB expression in nucleus accumbens. PNAS. 106, 2915-2920.
  61. Kiyatkin, E. A. and Rebec, G. V. (1996) Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J. Neurophysiol. 75, 142-153.
  62. Koda, K., Ago, Y., Cong, Y., Kita, Y., Takuma, K. and Matsuda, T. (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J. Neurochem. 114, 259-270.
  63. Kollins, S. H., MacDonald, E. K. and Rush, C. R. (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects: review. Pharmacol. Biochem. Behav. 68, 611-627. https://doi.org/10.1016/S0091-3057(01)00464-6
  64. Kollins, S. H. (2003) Comparing the abuse potential of methylphenidate versus other stimulants: a review of available evidence and relevance to the ADHD patient. J. Clin. Psych. 64, 14-18. https://doi.org/10.4088/JCP.v64n0105
  65. Koob, G. F., Sanna, P. P. and Bloom, F. E. (1998) Neuroscience of addiction. Neuron 21, 467-476. https://doi.org/10.1016/S0896-6273(00)80557-7
  66. Koob, G. F. and LeMoal, M. (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacol. 24, 97-129. https://doi.org/10.1016/S0893-133X(00)00195-0
  67. Kopnisky, K. L. and Hyman, S. E. (2002) Molecular and cellular biology of addiction. In Neuropsychopharmacology: The Fifth Generation of Progress (K. L. Davis, D. Charney, J. T. Coyle, C. Nemeroff, Eds.), pp. 1368-1379. Lippincott Williams and Wilkins, Philadelphia.
  68. Kostrzewa, R. M., Reader, T. A. and Descarries, L. (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. J. Neurochem. 70, 889-898.
  69. Korsching, S., Turgeon, S. M., Pollack, A. E. and Fink, J. S. (1993) The neurotrophic factor concept: a reexamination. J. Neurosci. 13, 2739-2748.
  70. Kuczenski, R. and Segal, D. S. (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 68, 2032-2037.
  71. Kuczenski, R. and Segal, D. S. (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J. Neurosci. 22, 7264-7271.
  72. Kuczenski, R. and Segal, D. S. (2005) Stimulant actions in rodents: implications for attention-defi cit/hyperactivity disorder treatment and potential substance abuse. Biol. Psychiatry. 57, 1391-1396. https://doi.org/10.1016/j.biopsych.2004.12.036
  73. Lagace, D. C., Yee, J. K., Bolanos, C. A. and Eisch, A. J. (2006) Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis. Biol. Psychiatry 60, 1121-1130. https://doi.org/10.1016/j.biopsych.2006.04.009
  74. Lambert, N. M. and Hartsong, C. S. (1998) Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J. Learn. Diabil. 31, 533-544. https://doi.org/10.1177/002221949803100603
  75. Li, Y., Kolb, B. and Robinson, T. E. (2003) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacol. 28, 1082-5.
  76. Lile, J. A., Stoops, W. W., Durell, T. M., Glaser, P. E. and Rush, C. R. (2006) Discriminative-stimulus, self-reported, performance and cardiovascular effects of atomoxetine in methylphenidate-trained humans. Exp. Clin. Psychopharmacol. 14, 136-147. https://doi.org/10.1037/1064-1297.14.2.136
  77. Lin, J. S., Hou, Y. and Jouvet, M. (1996) Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafi nil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc. Natl. Acad. Sci. USA. 93, 14128-14133. https://doi.org/10.1073/pnas.93.24.14128
  78. Lu, B. and Figurov, A. (1997) Role of neurotrophins in synapse development and plasticity. Rev. Neurosci. 8, 1-12. https://doi.org/10.1515/REVNEURO.1997.8.1.1
  79. Maganti, R. (2004) Neuroscience of psychoactive substance abuse and dependence. Annals of Pharmacother. 38, 1-264.
  80. Mandyam, C. D., Wee, S., Crawford, E. F., Eisch, A. J., Richardson, H. N. and Koob, G. F. (2008) Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol. Psych. 64, 958-965. https://doi.org/10.1016/j.biopsych.2008.04.010
  81. Meredith, G. E., Callen, S. and Scheuer D. A. (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdale, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res. 949, 218-227. https://doi.org/10.1016/S0006-8993(02)03160-8
  82. Mijnster, M. J., Galis-de Graaf Y. and Voorn, P. (1998) Serotonergic regulation of neuropeptide and glutamic acid decarboxylase mRNA levels in the rat striatum and globus pallidus: studies with fl uoxetine and DOI. Brain Res. Mol. Brain Res. 54, 64-73. https://doi.org/10.1016/S0169-328X(97)00321-5
  83. Nestler, E. J. (1996) Under siege: the brain on opiates. Neuron. 16, 897-900. https://doi.org/10.1016/S0896-6273(00)80110-5
  84. Nestler E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev Neurosci. 2, 119-128. https://doi.org/10.1038/35053570
  85. Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A. and Duman, R. S. (1990) Chronic cocaine treatment decreases levels of the G protein subunits $Gi{\alpha}$ and Goα in discrete regions of rat brain. J. Neurochem. 55, 1079-1082. https://doi.org/10.1111/j.1471-4159.1990.tb04602.x
  86. Newcorn, J. H., Kratochvil, C. J., Allen, A. J., Casat, C. D., Ruff, D. D., Moore, R. J. and Michelson, D. (2008) Atomoxetine and osmotically released methylphenidate for the treatment of attention deficit hyperactivity disorder: acute comparison and differential response. Am. J. Psych. 165, 721-730. https://doi.org/10.1176/appi.ajp.2007.05091676
  87. Norrholm, S. D., Bibb, J. A., Nestler, E. J. Ouimet, C. C., Taylor. J. R. and Greengard, P. (2003) Cocaine-induced proliferation of dendritic spines in the nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neurosci. 26, 12308-12313.
  88. Okamoto, K. and Aoki, K. (1963) Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 27, 282-293. https://doi.org/10.1253/jcj.27.282
  89. Pandolfo, P., Pamplona, F., Prediger, R. and Takahashi, R. (2007) Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention defi cit hyperactivity disorder, to the locomotor stimulation induced by cannabinoid receptor agonist WIN 55,212-2. Eur. Jour. Pharmacol. 563, 141-148. https://doi.org/10.1016/j.ejphar.2007.02.013
  90. Pandolfo, P., Vendruscolo, L., Sordi, R. and Takahashi, R. (2009) Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat-an animal model of attention deficit hyperactivity disorder. Psychopharmacol. 205, 319-326. https://doi.org/10.1007/s00213-009-1542-3
  91. Piazza, P. V., Deminie`re, J. M., Le Moal, M. and Simon, H. (1989) Factors that predict individual vulnerability to amphetamine self-administration, Science 245, 1511-1513. https://doi.org/10.1126/science.2781295
  92. Pierce, R. C. and Kalivas, P. W. (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192-216. https://doi.org/10.1016/S0165-0173(97)00021-0
  93. Pierce, R. C., Bell, K., Duffy, P. and Kalivas, P. W. (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550-1560.
  94. Prasad, S. and Steer, S. (2008) Switching from neurostimulant therapy to atomoxetine in children and adolescents with attention-deficit hyperactivity disorder: clinical approaches and review of current available evidence. Ped. Drugs 10, 39-47. https://doi.org/10.2165/00148581-200810010-00005
  95. Pulvirenti, L., Maldonado-Lopez, R. and Koob, G. F. (1992) NMDA receptors in the nucleus accumbens modulate intravenous cocaine but not heroin self-administration in the rat. Brain Res. 594, 327-330. https://doi.org/10.1016/0006-8993(92)91145-5
  96. Pulvirenti, L., Berrier, R., Kreifeldt, M. and Koob, G. F. (1994) Modulation of locomotor activity by NMDA receptors in the nucleus accumbens core and shell regions of the rat. Brain Res. 664, 231-236. https://doi.org/10.1016/0006-8993(94)91977-1
  97. Rat Genome Database: 2008 (http://rgd.mcw.edu).
  98. Reid, M. S. and Berger, S. P. (1996) Evidence for sensitization of cocaine-induced mucleus accumbens glutamate release. Neuroreport 7, 1325-1329. https://doi.org/10.1097/00001756-199605170-00022
  99. Robinson, L. M., Sclar, D. A., Skaer, T. L. and Galin, R. S. (1999) National trends in the prevalence of attention-defi cit/hyperactivity disorder and the prescribing of methylphenidate among school-age children: 1990-1995. Clin. Pediatr. (Phila). 38, 209-217. https://doi.org/10.1177/000992289903800402
  100. Robinson, T. E. and Kolb, B. (1997) Persistent structural modifi cations in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 21, 8491-8497.
  101. Robinson, T. E. and Kolb, B. (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacol. 47, 33-46. https://doi.org/10.1016/j.neuropharm.2004.06.025
  102. Robinson, T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247-291. https://doi.org/10.1016/0165-0173(93)90013-P
  103. Robinson, T. E. and Kolb, B. (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598-1604. https://doi.org/10.1046/j.1460-9568.1999.00576.x
  104. Russell, V. A., Sagvolden, T. and Johansen, E. B. (2005) Animal models of attention-defi cit hyperactivity disorder. Behav. Brain Funct. 1, 9. https://doi.org/10.1186/1744-9081-1-9
  105. Sagvolden, T. and Sergeant, J. A. (1998) Attention defi cit/hyperactivity disorder--from brain dysfunctions to behaviour. Behav. Brain Res. 94, 1-10. https://doi.org/10.1016/S0166-4328(97)00164-2
  106. Sagvolden, T., Russell, V. A., Aase, H., Johansen, E. B. and Farshbaf, M. (2005a) Rodent models of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1239-1247. https://doi.org/10.1016/j.biopsych.2005.02.002
  107. Sagvolden, T., Johansen, E. B., Aase, H. and Russell, V. A. (2005b) A dynamic developmental theory of Attention- Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav. Brain. Sci. 28, 397-419.
  108. Sagvolden, T., Johansen, E. B., Wøien, G., Walaas, S. I., Storm-Mathisen, J., Bergersen, L. H., Hvalby, O., Jensen, V., Aase, H., Russell, V. A., Killeen, P. R., Dasbanerjee, T., Middleton, F. A. and Faraone S. V. (2009) The spontaneously hypertensive rat model of ADHD--the importance of selecting the appropriate reference strain. Neuropharmacol. 57, 619-626. https://doi.org/10.1016/j.neuropharm.2009.08.004
  109. See, R. E. and Kalivas, P. W. (2008) Neuroscience of substance abuse and dependence. In Kaplan & Sadock's Comprehensive Textbook of Psychiatry (B. J. Sadock, V. A. Sadock, P. Ruiz, Eds.), pp. 387-393. Williams & Wilkins, Lippincott.
  110. Segal, D. S. and Kuczenski, R. (1999) Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral prolife profile. J. Pharmacol. Exp. Ther. 291, 19-30.
  111. Segal, D. S. and Kuczenski, R. (1987) Individual differences in responsiveness to single and repeated amphetamine administration: behavioral characteristics and neurochemical correlates. J. Pharmacol. Exp. Ther. 242, 917-926.
  112. Self, D. W. and Nestler, E. J. (1995) Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463-495. https://doi.org/10.1146/annurev.ne.18.030195.002335
  113. Sontag, T., Tucha, O., Walitza, S. and Lange, K. W. (2010) Animal models of attention defi cit/hyperactivity disorder (ADHD): a critical review. ADHD Atten. Def. Hyp. Disord. 2, 1-20. https://doi.org/10.1007/s12402-010-0019-x
  114. Sorg, B. A., Davidson, D. L., Kalivas, P. W. and Prasad, B. M. (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J. Pharmacol. Exp. Ther. 281, 54-61.
  115. Spangler, R., Zhou, Y., Maggos, C. E., Schlussman, S. D., Ho, A. and Kreek, M. J. (1997) Prodynorphin, proenkephalin and kappa opioid receptor mRNA responses to acute ‘‘binge’’ cocaine. Brain Res. Mol. Brain Res. 44, 139-142. https://doi.org/10.1016/S0169-328X(96)00249-5
  116. Starr, H. L. and Kemner, J. (2005) Multicenter, randomized, open-label study of OROS methylphenidate versus atomoxetine: treatment outcomes in African American children with ADHD. J. Natl. Med. Assoc. 97, 11S-16S.
  117. Steiner, H. and Gerfen, C. R. (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J. Neurosci. 13, 5066-5081.
  118. Steiner, H. and Gerfen, C. R. (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 123, 60-76. https://doi.org/10.1007/s002210050545
  119. Steketee, J. D. (2005) Cortical mechanisms of cocaine sensitization. Crit. Rev. Neurobiol. 17, 69-86. https://doi.org/10.1615/CritRevNeurobiol.v17.i2.20
  120. Striplin, C. D. and Kalivas, P. W. (1993) Robustness of G protein changes in cocaine sensitization shown with immunoblotting. Synapse 14, 10-15. https://doi.org/10.1002/syn.890140103
  121. Swanson, J., McBurnett, K., Christian, D. and Wigal, T. (1995) Stimulant medications and the treatment of children with ADHD. In Advances in Clinical Psychology (T. Ollendick, R. Prinz, Eds.), pp. 265-322. Plenum Press, New York, NY.
  122. Swanson, J. M., Sergeant, J. A., Taylor, E., Sonuga-Barke, E. J. S., Jensen, P. S. and Cantwell, D. P. (1998) Attention defi cit disorder and hyperkinetic disorder. Lancet. 351, 429-433. https://doi.org/10.1016/S0140-6736(97)11450-7
  123. Swanson, C. J., Perry, K. W., Koch-Krueger, S., Katner, J., Svensson, K. A. and Bymaster, F. P. (2006) Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacol. 50, 755-760. https://doi.org/10.1016/j.neuropharm.2005.11.022
  124. Szumlinski, K., Ary, A. W. and Lominac K. D. (2008) Homers regulate drug-induced neuroplasticity: Implications for addiction. Biochem. Pharmacol. 75, 112-133. https://doi.org/10.1016/j.bcp.2007.07.031
  125. Teicher, M. H., Andersen, S. L. and Hostetter, J. C. (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev. Brain. Res. 89, 167-172. https://doi.org/10.1016/0165-3806(95)00109-Q
  126. Teicher, M. H., Andersen, S. L. and Hostetter, J. C. (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev. Brain. Res. 89, 167-172. https://doi.org/10.1016/0165-3806(95)00109-Q
  127. Teicher, M. H., Anderson, C. M., Polcari, A., Glod, C. A., Maas, L. C. and Renshaw, P. F. (2000). Functional deficits in basal ganglia of children with attention-deficit hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat. Med. 6, 470-473. https://doi.org/10.1038/74737
  128. Thomas, U. (2002) Modulation of synaptic signalling complexes by Homer proteins. J. Neurochem. 81, 407-413. https://doi.org/10.1046/j.1471-4159.2002.00869.x
  129. Toda, S., Shen, H. W., Peters, J., Cagle, S. and Kalivas, P. W. (2006) Cocaine increases actin cycling: Effects in the reinstatement model of drug seeking. J. Neurosci. 26, 1579. https://doi.org/10.1523/JNEUROSCI.4132-05.2006
  130. Todtenkopf, M. S., Parsegian, A., Naydenov, A., Neve, R. L., Konradi, C. and Carlezon, Jr. W. A. (2006) Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J. Neurosci. 26, 11665-11669. https://doi.org/10.1523/JNEUROSCI.3070-06.2006
  131. Unal, C. T., Beverley, J. A., Willuhn, I. and Steiner, H. (2009) Longlasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a. Eur J. Neurosci. 21, 1615-1626. https://doi.org/10.1016/j.neubiorev.2006.12.002
  132. van der Kooij, M. A. and Glennon, J. C. (2007) Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 31, 597-618. https://doi.org/10.1016/j.neubiorev.2006.12.002
  133. Vanderschuren, L. J. and Kalivas, P. W. (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacol. 151, 99-120. https://doi.org/10.1007/s002130000493
  134. Vendruscolo, L. F., Izidio, G. S. and Takahashi, R. N. (2009) Drug reinforcement in a rat model of attention deficit/hyperactivity disorderthe spontaneously hypertensive rat (SHR). Curr. Drug Abuse Rev. 2, 177-183. https://doi.org/10.2174/1874473710902020177
  135. Vezina, P. (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev. 27, 827-839. https://doi.org/10.1016/j.neubiorev.2003.11.001
  136. Volkow N. D. and Swanson, J. M. (2003) Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am. J. Psychiatry. 160, 1909-1918. https://doi.org/10.1176/appi.ajp.160.11.1909
  137. Volkow, N. D., Fowler, J. S., Wang, G. J., Ding, Y. S. and Gatley, S. J., (2002a) Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur. J. Neuropsychopharmacol. 12, 557-566. https://doi.org/10.1016/S0924-977X(02)00104-9
  138. Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Wong, C., Hitzemann, R. and Pappas, N. R. (1999) Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J. Pharmacol. Exp. Ther. 291, 409-415. https://doi.org/10.1002/syn.10137
  139. Volkow, N. D., Wang, G. J., Fowler, J. S., Thanos, P. P., Logan, J. and Gatley, S. J., (2002b) Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 46, 79-82. https://doi.org/10.1002/syn.10137
  140. Walker, P. D., Capodilupo J. G., Wolf W. A. and Carlock, L. R. (1996) Preprotachykinin and preproenkephalin mRNA expression within striatal subregions in response to altered serotonin transmission. Brain Res. 732, 25-35. https://doi.org/10.1016/0006-8993(96)00483-0
  141. Wee, S. and Woolverton, W. L. (2004) Evaluation of the reinforcing effects of atomoxetine in monkeys: comparison to methylphenidate and desipramine. Drug and Alc. Dep. 75, 271-276. https://doi.org/10.1016/j.drugalcdep.2004.03.010
  142. White, F. J. and Kalivas, P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug and Alc. Dep. 51, 141-153. https://doi.org/10.1016/S0376-8716(98)00072-6
  143. White, F. J. and Wang, R. Y. (1984) Electrophysiological evidence for A10 dopamine autoreceptor subsensitivity following chronic d-amphetamine treatment. Brain Res. 309, 283-292. https://doi.org/10.1016/0006-8993(84)90595-X
  144. White, F. J., Hu, X. T., Henry, D. J. and Zhang, X. F. (1995) Neurophysiological alterations in the mesocorticolimbic dopamine system during repeated cocaine administration. In The Neurobiology of Cocaine: Cellular and Molecular Mechanisms (R. P. Jr. Hammer, Ed.), pp. 95-115. CRC Press, Boca Raton.
  145. White, F. J., Hu, X. T., Zhang, X. F. and Wolf, M. E. (1995) Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445-454.
  146. White, F. J. and Wolf, M. E. (1991) Psychomotor stimulants. In The Biological Basis of Drug Tolerance and Dependence (J. A. Pratt, Ed.), pp. 153-197. Academic Press, London, https://doi.org/10.1177/1087054705281121
  147. Wigal, S. B., McGough, J. J., McCracken, J. T., Biederman, J., Spencer, T. J., Posner, K. L., Wigal, T. L., Kollins, S. H., Clark, T. M., Mays, D. A., Zhang, Y. and Tulloch, S. J. (2005) A laboratory school comparison of mixed amphetamine salts extended release (Adderall XR) and atomoxetine (Strattera) in school-aged children with attention deficit/hyperactivity disorder. J. Atten. Disord. 9, 275-289. https://doi.org/10.1177/1087054705281121
  148. Wilens, T. E., Faraone, S. V., Biederman, J. and Gunawardene, S. (2003) Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature. Pediatrics 111, 179-185. https://doi.org/10.1542/peds.111.1.179
  149. Wilens, T. E., Adler, L. A., Adams, J., Sgambati, S., Rotrosen, J., Sawtelle, R., Utzinger, L. and Fusillo, S. (2008) Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am. Acad. Child. Adolesc. Psychiatry 47, 21-31. https://doi.org/10.1097/chi.0b013e31815a56f1
  150. Willuhn, I., Sun, W. and Steiner, H. (2003) Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioral context. Eur. J. Neurosci. 17, 1053-1066. https://doi.org/10.1046/j.1460-9568.2003.02525.x
  151. Xiao, B., Tu, J. C. and Worley. P. (2000) Homer: a link between neural activity and glutamate receptor function. Curr. Opin. Neurobiol. 10, 370-374. https://doi.org/10.1016/S0959-4388(00)00087-8
  152. Xue, C. J., Ng, J. P., Li, Y. and Wolf, M. E. (1996) Acute and repeated systemic amphetamine administration: Effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67, 352-363. https://doi.org/10.1016/S0006-8993(02)04240-3
  153. Yang, P., Behrang, A., Swann, A. and Nachum, D. (2003) Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res. 971, 139-152. https://doi.org/10.1016/S0006-8993(02)04240-3
  154. Yano, M. and Steiner, H. (2005a) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neurosci. 132, 855-865. https://doi.org/10.1016/j.neuroscience.2004.12.019
  155. Yano, M. and Steiner, H. (2005b) Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides. Neuropsychopharmacol. 30, 901-915. https://doi.org/10.1038/sj.npp.1300613
  156. Yano, M., Beverley, J. A. and Steiner, H. (2006) Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 receptors: Interhemispheric effects. Neurosci. 140, 699-709. https://doi.org/10.1016/j.neuroscience.2006.02.017
  157. Yano, M. and Steiner, H. (2007) Methylphenidate and cocaine:the same effects on gene regulation. Trends in Pharmacol Sci. 28, 588-596. https://doi.org/10.1016/j.tips.2007.10.004
  158. Zhang, X. F., Hu, X. T., White, F. J. and Wolf, M. E. (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J. Pharmacol. Exp. Ther. 281, 699-706.

Cited by

  1. Conditioned place preference studies with atomoxetine in an animal model of ADHD: Effects of previous atomoxetine treatment vol.667, pp.1-3, 2011, https://doi.org/10.1016/j.ejphar.2011.05.057
  2. Methylphenidate treatment in the spontaneously hypertensive rat: influence on methylphenidate self-administration and reinstatement in comparison with Wistar rats vol.221, pp.2, 2012, https://doi.org/10.1007/s00213-011-2564-1
  3. Rewarding and reinforcing effects of the NMDA receptor antagonist–benzodiazepine combination, zoletil®: Difference between acute and repeated exposure vol.233, pp.2, 2012, https://doi.org/10.1016/j.bbr.2012.05.038