Browse > Article
http://dx.doi.org/10.4062/biomolther.2011.19.1.009

Neuroadaptations Involved in Long-Term Exposure to ADHD Pharmacotherapies: Alterations That Support Dependence Liability of These Medications  

Dela Pena, Ike C. (Uimyung Research Institute for Neuroscience, Sahmyook University)
Ahn, Hyung-Seok (Uimyung Research Institute for Neuroscience, Sahmyook University)
Shin, Chan-Young (Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University)
Cheong, Jae-Hoon (Uimyung Research Institute for Neuroscience, Sahmyook University)
Publication Information
Biomolecules & Therapeutics / v.19, no.1, 2011 , pp. 9-20 More about this Journal
Abstract
Repeated administration of addictive drugs causes cellular and molecular changes believed to be the mechanism of pro-addictive behaviors. Neuroadaptations also take place with repeated administration of amphetamine, methylphenidate and atomoxetine, drugs for Attention Deficit Hyperactivity Disorders (ADHD), and it is speculated that these changes may serve as markers to demonstrate the dependence liability of these therapies. In this review, we enumerate the neuroadaptive changes in molecules associated with neuronal signaling and plasticity, as well as neuronal morphology wrought by repeated administration of ADHD medications. We provide the current perspective on the dependence liability of these therapies, and also suggest of some factors that need to be considered in future investigations, so that what is drawn from animal studies would be better consolidated with those known clinically.
Keywords
Neuroadaptations; Amphetamine; Methylphenidate; Atomoxetine; Dependence liability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Kalivas, P. W. and Duffy, T. (1998) Repeated cocaine administration alters extracellular glutamate levels in the ventral tegmental area. J. Neurochem. 70, 1497-1502.
2 Kalivas, P. W. and O’Brien, C. (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacol. 33, 166-180.   DOI
3 Kankaanpaa, A., Meririnne, E. and Seppala, T. (2002) 5-HT3 receptor antagonist MDL 72222 attenuates cocaine- and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat. Psychopharmacol. (Ber) 159, 341-350.   DOI
4 Grimm, J. W., Lu, L., Hayashi, T., Hope, B. T., Su, T. P. and Shaham, Y. (2003) Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J. Neurosci. 23, 742-747.
5 Guillin, O., Diaz, J., Carroll, P., Griffon, N., Schwartz, J. C. and Sokoloff, P. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature. 411, 86-89.   DOI
6 Heal, D. J., Cheetham, S. C. and Smith, S. L. (2009) The neuropharmacology of ADHD drugs in vivo: Insights on effi cacy and safety. Neuropharmacol. 57, 7-8.
7 Hechtman, L. and Greenfi eld, B. (2003) Long-term use of stimulants in children with attention defi cit hyperactivity disorder: safety, efficacy, and long-term outcome. Paediatr. Drugs 5, 787-794.   DOI   ScienceOn
8 Heil, S. H., Holmes, H. W., Bickel, W. K., Higgins, S. T., Badger, G. J., Laws, H. F. and Faries, D. E. (2002) Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend. 67, 149-156.   DOI
9 Herges, S. and Taylor, D. A. (1998) Involvement of serotonin in the modulation of cocaine-induced locomotor activity in the rat. Pharmacol. Biochem. Behav. 59, 595-611.   DOI
10 Himelstein, J., Newcorn, J. H. and Halperin, J. M. (2000) The neurobiology of attention-deficit hyperactivity disorder. Front. Biosci. 5, D461-D478.   DOI
11 Hiroi, N., Brown, J. R., Haile, C. N., Ye, H., Greenberg, M. E. and Nestler, E. J. (1997) FosB mutant mice: Loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine's psychomotor and rewarding effects. Proc. Natl. Acad. Sci. USA. 94, 10397-10402.   DOI
12 Hooks, M. S., Jones, G. H., Neill, D. B. and Justice, J. B. (1991) Individual differences in amphetamine sensitization: dose-dependent effects. Pharmacol. Biochem. Behav. 41, 203-210.
13 Faraone, S. V. and Biederman, J. (2005) What is the prevalence of adult ADHD? Results of a population screen of 966 adults. J. Atten. Dissord. 9, 384-391.   DOI
14 Faraone, S. V., Wigal, S. B. and Hodgkins, P. (2007) Forecasting three-month outcomes in a laboratory school comparison of mixed amphetamine salts extended release (Adderall XR) and atomoxetine (Strattera) in school-aged children with ADHD. J. Atten. Disord. 11, 74-82.   DOI
15 Fumagalli, F., Cattaneo, A., Caffi no, L., Ibba, M., Racagni, G., Carboni, E., Gennarelli, M. and Riva, M. A. (2010) Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: Comparison with methylphenidate. Pharmacol. Res. 62, 523-529.   DOI
16 Gao, W. Y., Lee, T. H., King, G. R. and Ellinwood, E. H. (1998) Alterations in baseline activity and quinpirole sensitivity in putative dopamine neurons in the substantia nigra and ventral tegmental area after withdrawal from cocaine pretreatment. Neuropsychophamacol. 18, 222-232.   DOI
17 Gardier, A. M., Moratalla, R., Cuellar, B., Sacerdote, M., Guibert, B., Lebrec, H. and Graybiel, A. M. (2000) Interaction between the serotoninergic and dopaminergic systems in d-fenfl uramine-induced activation of cfos and jun B genes in rat striatal neurons. J. Neurochem. 74, 1363-1373.
18 Yang, P., Behrang, A., Swann, A. and Nachum, D. (2003) Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res. 971, 139-152.   DOI
19 Yano, M. and Steiner, H. (2005a) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neurosci. 132, 855-865.   DOI
20 Yano, M. and Steiner, H. (2005b) Topography of methylphenidate (Ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides. Neuropsychopharmacol. 30, 901-915.   DOI
21 Gasior, M., Bergman, J., Kallman, M. J. and Paronis, C. A. (2005) Evaluation of the reinforcing effects of monoamine reuptake inhibitors under a concurrent schedule of food and i.v. drug delivery in rhesus monkeys. Neuropsychopharmacol. 30, 758-764.
22 Goldman-Rakic, P. S. (1996) Cellular basis of working memory. Neuron 14, 477-485.
23 Grimes, C. A. and Jope, R. S. (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog. Neurobiol. 65, 391-426.   DOI
24 Chase, T. D., Carrey, N., Brown, R. E. and Wilkinson, M. (2005a) Methylphenidate regulates c-fos and fosB expression in multiple regions of the immature rat brain. Brain Res. Dev. Brain Res. 156, 1-12.   DOI   ScienceOn
25 Chase, T. D., Carrey, N., Brown, R. E. and Wilkinson, M. (2005b) Methylphenidate differentially regulates c-fos and fosB expression in the developing rat striatum. Dev. Brain Res. 157, 181-191.   DOI
26 Chase, T., Carrey, N., Soo, E. and Wilkinson, M. (2007) Methylphenidate regulates activity regulated cytoskeletal associated but not brain-derived neurotrophic factor gene expression in the developing rat striatum. Neurosci. 144, 969-984.   DOI
27 Commons, K. G. (2010) Neuronal pathways linking substance P to drug addiction and stress. Brain Res. 1314, 175-182.   DOI
28 Zhang, X. F., Hu, X. T., White, F. J. and Wolf, M. E. (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J. Pharmacol. Exp. Ther. 281, 699-706.
29 Yano, M., Beverley, J. A. and Steiner, H. (2006) Inhibition of methylphenidate-induced gene expression in the striatum by local blockade of D1 receptors: Interhemispheric effects. Neurosci. 140, 699-709.   DOI   ScienceOn
30 Yano, M. and Steiner, H. (2007) Methylphenidate and cocaine:the same effects on gene regulation. Trends in Pharmacol Sci. 28, 588-596.   DOI   ScienceOn
31 White, F. J., Hu, X. T., Zhang, X. F. and Wolf, M. E. (1995) Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445-454.
32 White, F. J. and Wolf, M. E. (1991) Psychomotor stimulants. In The Biological Basis of Drug Tolerance and Dependence (J. A. Pratt, Ed.), pp. 153-197. Academic Press, London,   DOI
33 Everitt, B. J. and Robbins,T. W. (2005) Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 8, 1481-1489.   DOI
34 Cotterly, L., Beverley, J. A., Yano, M. and Steiner, H. (2007) Dysregulation of gene induction in corticostriatal circuits after repeated methylphenidate treatment in adolescent rats: Differential effects on zif 268 and homer 1a. Eur. J. Neurosci. 25, 3617-3628.   DOI
35 Daunais, J. B. and McGinty, J. F. (1994) Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs. Synapse 18, 35-45.   DOI
36 de la Pena, I. C., Ahn, H. S., Choi, J. Y., Shin, C. Y., Ryu, J. H. and Cheong, J. H. (2011) Methylphenidate self-adminstration and conditioned place preference in an animal model of attention deficit hyperactivity disorder-the spontaneously hypertensive rat. Behav. Pharmacol. 22, 31-39.   DOI   ScienceOn
37 Evans, C., Blackburn, D. and Butt, P. (2004) Use and abuse of methylphenidate in attention-deficit hyperactivity disorder. CPJ/RPC 137, 30-33.
38 Biederman, J., Wigal, S. B., Spencer, T. J., McGough, J. J. and Mays, D. A. (2006) A post hoc subgroup analysis of an 18-day randomized controlled trial comparing the tolerability and effi cacy of mixed amphetamine salts extended release and atomoxetine in school-age girls with attention-deficit/hyperactivity disorder. Clin. Ther. 28, 280-293.   DOI
39 Bonci, A., Bernardi, G., Grillner, P. and Mercuri, N. B. (2003) The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction. Trends Pharmacol. Sci. 24, 172-177.   DOI
40 Bramham, C. R. and Messaoudi, E. (2005). BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76, 99-125.   DOI
41 Willuhn, I., Sun, W. and Steiner, H. (2003) Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioral context. Eur. J. Neurosci. 17, 1053-1066.   DOI
42 Wigal, S. B., McGough, J. J., McCracken, J. T., Biederman, J., Spencer, T. J., Posner, K. L., Wigal, T. L., Kollins, S. H., Clark, T. M., Mays, D. A., Zhang, Y. and Tulloch, S. J. (2005) A laboratory school comparison of mixed amphetamine salts extended release (Adderall XR) and atomoxetine (Strattera) in school-aged children with attention deficit/hyperactivity disorder. J. Atten. Disord. 9, 275-289.   DOI
43 Wilens, T. E., Faraone, S. V., Biederman, J. and Gunawardene, S. (2003) Does stimulant therapy of attention-deficit/hyperactivity disorder beget later substance abuse? A meta-analytic review of the literature. Pediatrics 111, 179-185.   DOI   ScienceOn
44 Wilens, T. E., Adler, L. A., Adams, J., Sgambati, S., Rotrosen, J., Sawtelle, R., Utzinger, L. and Fusillo, S. (2008) Misuse and diversion of stimulants prescribed for ADHD: a systematic review of the literature. J Am. Acad. Child. Adolesc. Psychiatry 47, 21-31.   DOI
45 Xiao, B., Tu, J. C. and Worley. P. (2000) Homer: a link between neural activity and glutamate receptor function. Curr. Opin. Neurobiol. 10, 370-374.   DOI
46 Xue, C. J., Ng, J. P., Li, Y. and Wolf, M. E. (1996) Acute and repeated systemic amphetamine administration: Effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67, 352-363.   DOI
47 Volkow, N. D., Fowler, J. S., Wang, G. J., Ding, Y. S. and Gatley, S. J., (2002a) Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur. J. Neuropsychopharmacol. 12, 557-566.   DOI
48 Carlezon, W. A. Jr. and Nestler, E. J. (2002) Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci. 25, 610-615.   DOI
49 Brandon, C. L. and Steiner, H. (2003) Repeated methylphenidate treatment in adolescent rats alters gene regulation in the striatum. Eur. J. Neurosci. 18, 1584-1592.   DOI
50 Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., Morin, S. M., Gehlert, D. R. and Perry, K. W. (2002) Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacol. 27, 699-711.   DOI
51 Chao, J. and Nestler, E. J. (2004) Molecular neurobiology of drug addiction. Annu. Rev. Med. 55, 113-132.   DOI
52 Chase, T. D., Brown, R. E., Carrey, N., Wilkinson, M., Chase, T. D., Brown, R. E., Carrey, N. and Wilkinson, M. (2003) Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. Neuroreport 14, 769-772.   DOI
53 Andersen, S. L., Arvanitogiannis, A., Pliakas, A. M., LeBlanc, C. and Carlezon, W. A. Jr. (2002) Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nat. Neurosci. 5, 13-14.   DOI
54 Arnsten A. F. (2006) Stimulants: therapeutic actions in ADHD. Neuropsychopharmacol. 31, 2376-2383.   DOI
55 Askenasy, E. P., Taber, K. H., Yang, P. B. and Dafny, N. (2007) Methylphenidate (Ritalin): behavioral studies in the rat. Intern. J. Neurosci. 117, 757-794.   DOI   ScienceOn
56 Wee, S. and Woolverton, W. L. (2004) Evaluation of the reinforcing effects of atomoxetine in monkeys: comparison to methylphenidate and desipramine. Drug and Alc. Dep. 75, 271-276.   DOI
57 Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Wong, C., Hitzemann, R. and Pappas, N. R. (1999) Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J. Pharmacol. Exp. Ther. 291, 409-415.   DOI
58 Volkow, N. D., Wang, G. J., Fowler, J. S., Thanos, P. P., Logan, J. and Gatley, S. J., (2002b) Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 46, 79-82.   DOI
59 Walker, P. D., Capodilupo J. G., Wolf W. A. and Carlock, L. R. (1996) Preprotachykinin and preproenkephalin mRNA expression within striatal subregions in response to altered serotonin transmission. Brain Res. 732, 25-35.   DOI
60 White, F. J. and Kalivas, P. W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug and Alc. Dep. 51, 141-153.   DOI
61 White, F. J. and Wang, R. Y. (1984) Electrophysiological evidence for A10 dopamine autoreceptor subsensitivity following chronic d-amphetamine treatment. Brain Res. 309, 283-292.   DOI
62 White, F. J., Hu, X. T., Henry, D. J. and Zhang, X. F. (1995) Neurophysiological alterations in the mesocorticolimbic dopamine system during repeated cocaine administration. In The Neurobiology of Cocaine: Cellular and Molecular Mechanisms (R. P. Jr. Hammer, Ed.), pp. 95-115. CRC Press, Boca Raton.
63 Toda, S., Shen, H. W., Peters, J., Cagle, S. and Kalivas, P. W. (2006) Cocaine increases actin cycling: Effects in the reinstatement model of drug seeking. J. Neurosci. 26, 1579.   DOI
64 Beitner-Johnson, D., Guitart, X. and Nestler, E. J. (1992) Neurofi lament proteins and the mesolimbic dopamine system: common regulation by chronic morphine and chronic cocaine in the rat ventral tegmental area. J. Neurosci. 12, 2165-2176.
65 Banerjee, P. S., Aston, J., Khundakar, A. A. and Zetterstrom, T. S. (2009) Differential regulation of psychostimulant-induced gene expression of brain derived neurotrophic factor and the immediateearly gene arc in the juvenile and adult brain Eur. J. Neurosci. 29, 465-476.   DOI
66 Barkley, R. A., Fischer, M., Smallish, L. and Fletcher, K. (2003) Does the treatment of attention-defi cit/hyperactivity disorder with stimulants contribute to drug use/abuse? A 13-year prospective study. Pediatrics 111, 97-109.   DOI
67 Barron, E., Yang, P. B., Swann, A. C. and Dafny, N. (2009) Adolescent and adult male spontaneous hyperactive rats (SHR) respond differently to acute and chronic methylphenidate (Ritalin). Int. J. Neurosci. 119, 40-58.   DOI
68 Berke, J. D. and Hyman, S. E. (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25, 515-532.   DOI
69 Biederman, J. and Faraone, S. V. (2005) Attention-deficit hyperactivity disorder. Lancet. 366, 237-248.   DOI
70 Todtenkopf, M. S., Parsegian, A., Naydenov, A., Neve, R. L., Konradi, C. and Carlezon, Jr. W. A. (2006) Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J. Neurosci. 26, 11665-11669.   DOI
71 Unal, C. T., Beverley, J. A., Willuhn, I. and Steiner, H. (2009) Longlasting dysregulation of gene expression in corticostriatal circuits after repeated cocaine treatment in adult rats: effects on zif 268 and homer 1a. Eur J. Neurosci. 21, 1615-1626.   DOI
72 van der Kooij, M. A. and Glennon, J. C. (2007) Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 31, 597-618.   DOI
73 Vanderschuren, L. J. and Kalivas, P. W. (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacol. 151, 99-120.   DOI
74 Vendruscolo, L. F., Izidio, G. S. and Takahashi, R. N. (2009) Drug reinforcement in a rat model of attention deficit/hyperactivity disorderthe spontaneously hypertensive rat (SHR). Curr. Drug Abuse Rev. 2, 177-183.   DOI
75 Vezina, P. (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev. 27, 827-839.   DOI   ScienceOn
76 Volkow N. D. and Swanson, J. M. (2003) Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am. J. Psychiatry. 160, 1909-1918.   DOI
77 Striplin, C. D. and Kalivas, P. W. (1993) Robustness of G protein changes in cocaine sensitization shown with immunoblotting. Synapse 14, 10-15.   DOI
78 Amini, B., Yang, P. B., Swann, A. C. and Dafny, N. (2004) Differential locomotor responses in male rats from three strains to acute methylphenidate. Int. J. Neurosci. 114, 1063-1083.   DOI   ScienceOn
79 Ackerman, J. M. and White, F. J. (1990) A10 somatodendritic dopamine autoreceptor sensitivity following withdrawal from repeated cocaine treatment. Neurosci. Lett. 117, 181-187.   DOI
80 Adriani, W., Leo, D., Greco, D., Rea, M., di Porzio, U., Laviola, G. and Perrone-Capano, C. (2006) Methylphenidate administration to adolescent rats determines plastic changes in reward-related behavior and striatal gene expression. Neuropsychopharmacol. 31, 1946-1956.   DOI
81 Andersen, S. L., LeBlanc, C. J. and Lyss, P. J. (2001) Maturational increases in c-fos expression in the ascending dopamine systems. Synapse 41, 345-350.   DOI
82 Szumlinski, K., Ary, A. W. and Lominac K. D. (2008) Homers regulate drug-induced neuroplasticity: Implications for addiction. Biochem. Pharmacol. 75, 112-133.   DOI
83 Swanson, J., McBurnett, K., Christian, D. and Wigal, T. (1995) Stimulant medications and the treatment of children with ADHD. In Advances in Clinical Psychology (T. Ollendick, R. Prinz, Eds.), pp. 265-322. Plenum Press, New York, NY.
84 Swanson, J. M., Sergeant, J. A., Taylor, E., Sonuga-Barke, E. J. S., Jensen, P. S. and Cantwell, D. P. (1998) Attention defi cit disorder and hyperkinetic disorder. Lancet. 351, 429-433.   DOI
85 Swanson, C. J., Perry, K. W., Koch-Krueger, S., Katner, J., Svensson, K. A. and Bymaster, F. P. (2006) Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacol. 50, 755-760.   DOI
86 Teicher, M. H., Andersen, S. L. and Hostetter, J. C. (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev. Brain. Res. 89, 167-172.   DOI
87 Teicher, M. H., Andersen, S. L. and Hostetter, J. C. (1995) Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Dev. Brain. Res. 89, 167-172.   DOI
88 Teicher, M. H., Anderson, C. M., Polcari, A., Glod, C. A., Maas, L. C. and Renshaw, P. F. (2000). Functional deficits in basal ganglia of children with attention-deficit hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat. Med. 6, 470-473.   DOI
89 Thomas, U. (2002) Modulation of synaptic signalling complexes by Homer proteins. J. Neurochem. 81, 407-413.   DOI
90 Segal, D. S. and Kuczenski, R. (1999) Escalating dose-binge treatment with methylphenidate: role of serotonin in the emergent behavioral prolife profile. J. Pharmacol. Exp. Ther. 291, 19-30.
91 Segal, D. S. and Kuczenski, R. (1987) Individual differences in responsiveness to single and repeated amphetamine administration: behavioral characteristics and neurochemical correlates. J. Pharmacol. Exp. Ther. 242, 917-926.
92 Self, D. W. and Nestler, E. J. (1995) Molecular mechanisms of drug reinforcement and addiction. Annu. Rev. Neurosci. 18, 463-495.   DOI
93 Sontag, T., Tucha, O., Walitza, S. and Lange, K. W. (2010) Animal models of attention defi cit/hyperactivity disorder (ADHD): a critical review. ADHD Atten. Def. Hyp. Disord. 2, 1-20.   DOI
94 Sorg, B. A., Davidson, D. L., Kalivas, P. W. and Prasad, B. M. (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. J. Pharmacol. Exp. Ther. 281, 54-61.
95 Spangler, R., Zhou, Y., Maggos, C. E., Schlussman, S. D., Ho, A. and Kreek, M. J. (1997) Prodynorphin, proenkephalin and kappa opioid receptor mRNA responses to acute ‘‘binge’’ cocaine. Brain Res. Mol. Brain Res. 44, 139-142.   DOI
96 Starr, H. L. and Kemner, J. (2005) Multicenter, randomized, open-label study of OROS methylphenidate versus atomoxetine: treatment outcomes in African American children with ADHD. J. Natl. Med. Assoc. 97, 11S-16S.
97 Steiner, H. and Gerfen, C. R. (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum. J. Neurosci. 13, 5066-5081.
98 Steiner, H. and Gerfen, C. R. (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp. Brain Res. 123, 60-76.   DOI
99 Robinson, T. E. and Kolb, B. (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacol. 47, 33-46.   DOI
100 Steketee, J. D. (2005) Cortical mechanisms of cocaine sensitization. Crit. Rev. Neurobiol. 17, 69-86.   DOI   ScienceOn
101 Robinson, T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247-291.   DOI
102 Robinson, T. E. and Kolb, B. (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci. 11, 1598-1604.   DOI
103 Russell, V. A., Sagvolden, T. and Johansen, E. B. (2005) Animal models of attention-defi cit hyperactivity disorder. Behav. Brain Funct. 1, 9.   DOI
104 Sagvolden, T. and Sergeant, J. A. (1998) Attention defi cit/hyperactivity disorder--from brain dysfunctions to behaviour. Behav. Brain Res. 94, 1-10.   DOI
105 Sagvolden, T., Russell, V. A., Aase, H., Johansen, E. B. and Farshbaf, M. (2005a) Rodent models of attention-deficit/hyperactivity disorder. Biol. Psychiatry 57, 1239-1247.   DOI
106 Sagvolden, T., Johansen, E. B., Aase, H. and Russell, V. A. (2005b) A dynamic developmental theory of Attention- Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav. Brain. Sci. 28, 397-419.
107 Sagvolden, T., Johansen, E. B., Wøien, G., Walaas, S. I., Storm-Mathisen, J., Bergersen, L. H., Hvalby, O., Jensen, V., Aase, H., Russell, V. A., Killeen, P. R., Dasbanerjee, T., Middleton, F. A. and Faraone S. V. (2009) The spontaneously hypertensive rat model of ADHD--the importance of selecting the appropriate reference strain. Neuropharmacol. 57, 619-626.   DOI   ScienceOn
108 Pierce, R. C., Bell, K., Duffy, P. and Kalivas, P. W. (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550-1560.
109 See, R. E. and Kalivas, P. W. (2008) Neuroscience of substance abuse and dependence. In Kaplan & Sadock's Comprehensive Textbook of Psychiatry (B. J. Sadock, V. A. Sadock, P. Ruiz, Eds.), pp. 387-393. Williams & Wilkins, Lippincott.
110 Pierce, R. C. and Kalivas, P. W. (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192-216.   DOI   ScienceOn
111 Prasad, S. and Steer, S. (2008) Switching from neurostimulant therapy to atomoxetine in children and adolescents with attention-deficit hyperactivity disorder: clinical approaches and review of current available evidence. Ped. Drugs 10, 39-47.   DOI
112 Pulvirenti, L., Maldonado-Lopez, R. and Koob, G. F. (1992) NMDA receptors in the nucleus accumbens modulate intravenous cocaine but not heroin self-administration in the rat. Brain Res. 594, 327-330.   DOI
113 Pulvirenti, L., Berrier, R., Kreifeldt, M. and Koob, G. F. (1994) Modulation of locomotor activity by NMDA receptors in the nucleus accumbens core and shell regions of the rat. Brain Res. 664, 231-236.   DOI
114 Rat Genome Database: 2008 (http://rgd.mcw.edu).
115 Reid, M. S. and Berger, S. P. (1996) Evidence for sensitization of cocaine-induced mucleus accumbens glutamate release. Neuroreport 7, 1325-1329.   DOI
116 Robinson, L. M., Sclar, D. A., Skaer, T. L. and Galin, R. S. (1999) National trends in the prevalence of attention-defi cit/hyperactivity disorder and the prescribing of methylphenidate among school-age children: 1990-1995. Clin. Pediatr. (Phila). 38, 209-217.   DOI
117 Newcorn, J. H., Kratochvil, C. J., Allen, A. J., Casat, C. D., Ruff, D. D., Moore, R. J. and Michelson, D. (2008) Atomoxetine and osmotically released methylphenidate for the treatment of attention deficit hyperactivity disorder: acute comparison and differential response. Am. J. Psych. 165, 721-730.   DOI
118 Robinson, T. E. and Kolb, B. (1997) Persistent structural modifi cations in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci. 21, 8491-8497.
119 Nestler E. J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev Neurosci. 2, 119-128.   DOI
120 Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A. and Duman, R. S. (1990) Chronic cocaine treatment decreases levels of the G protein subunits $Gi{\alpha}$ and Goα in discrete regions of rat brain. J. Neurochem. 55, 1079-1082.   DOI
121 Norrholm, S. D., Bibb, J. A., Nestler, E. J. Ouimet, C. C., Taylor. J. R. and Greengard, P. (2003) Cocaine-induced proliferation of dendritic spines in the nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neurosci. 26, 12308-12313.
122 Okamoto, K. and Aoki, K. (1963) Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 27, 282-293.   DOI   ScienceOn
123 Pandolfo, P., Pamplona, F., Prediger, R. and Takahashi, R. (2007) Increased sensitivity of adolescent spontaneously hypertensive rats, an animal model of attention defi cit hyperactivity disorder, to the locomotor stimulation induced by cannabinoid receptor agonist WIN 55,212-2. Eur. Jour. Pharmacol. 563, 141-148.   DOI   ScienceOn
124 Pandolfo, P., Vendruscolo, L., Sordi, R. and Takahashi, R. (2009) Cannabinoid-induced conditioned place preference in the spontaneously hypertensive rat-an animal model of attention deficit hyperactivity disorder. Psychopharmacol. 205, 319-326.   DOI
125 Lin, J. S., Hou, Y. and Jouvet, M. (1996) Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafi nil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc. Natl. Acad. Sci. USA. 93, 14128-14133.   DOI
126 Piazza, P. V., Deminie`re, J. M., Le Moal, M. and Simon, H. (1989) Factors that predict individual vulnerability to amphetamine self-administration, Science 245, 1511-1513.   DOI
127 Li, Y., Kolb, B. and Robinson, T. E. (2003) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacol. 28, 1082-5.
128 Lile, J. A., Stoops, W. W., Durell, T. M., Glaser, P. E. and Rush, C. R. (2006) Discriminative-stimulus, self-reported, performance and cardiovascular effects of atomoxetine in methylphenidate-trained humans. Exp. Clin. Psychopharmacol. 14, 136-147.   DOI
129 Lu, B. and Figurov, A. (1997) Role of neurotrophins in synapse development and plasticity. Rev. Neurosci. 8, 1-12.   DOI
130 Maganti, R. (2004) Neuroscience of psychoactive substance abuse and dependence. Annals of Pharmacother. 38, 1-264.
131 Mandyam, C. D., Wee, S., Crawford, E. F., Eisch, A. J., Richardson, H. N. and Koob, G. F. (2008) Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol. Psych. 64, 958-965.   DOI
132 Meredith, G. E., Callen, S. and Scheuer D. A. (2002) Brain-derived neurotrophic factor expression is increased in the rat amygdale, piriform cortex and hypothalamus following repeated amphetamine administration. Brain Res. 949, 218-227.   DOI
133 Koob, G. F. and LeMoal, M. (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacol. 24, 97-129.   DOI   ScienceOn
134 Mijnster, M. J., Galis-de Graaf Y. and Voorn, P. (1998) Serotonergic regulation of neuropeptide and glutamic acid decarboxylase mRNA levels in the rat striatum and globus pallidus: studies with fl uoxetine and DOI. Brain Res. Mol. Brain Res. 54, 64-73.   DOI
135 Nestler, E. J. (1996) Under siege: the brain on opiates. Neuron. 16, 897-900.   DOI
136 Koob, G. F., Sanna, P. P. and Bloom, F. E. (1998) Neuroscience of addiction. Neuron 21, 467-476.   DOI
137 Kopnisky, K. L. and Hyman, S. E. (2002) Molecular and cellular biology of addiction. In Neuropsychopharmacology: The Fifth Generation of Progress (K. L. Davis, D. Charney, J. T. Coyle, C. Nemeroff, Eds.), pp. 1368-1379. Lippincott Williams and Wilkins, Philadelphia.
138 Kostrzewa, R. M., Reader, T. A. and Descarries, L. (1998) Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. J. Neurochem. 70, 889-898.
139 Korsching, S., Turgeon, S. M., Pollack, A. E. and Fink, J. S. (1993) The neurotrophic factor concept: a reexamination. J. Neurosci. 13, 2739-2748.
140 Kuczenski, R. and Segal, D. S. (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J. Neurochem. 68, 2032-2037.
141 Kuczenski, R. and Segal, D. S. (2002) Exposure of adolescent rats to oral methylphenidate: preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to methamphetamine. J. Neurosci. 22, 7264-7271.
142 Katusic, S. K., Barbaresi, W. J., Colligan, R. C., Weaver, A. L., Leibson, C. L. and Jacobsen, S. J. (2005) Psychostimulant treatment and risk for substance abuse among young adults with a history of attentiondefi cit/hyperactivity disorder: a population-based, birth cohort study. J. Child. Adolesc. Psychopharmacol. 15, 764-776.   DOI   ScienceOn
143 Kuczenski, R. and Segal, D. S. (2005) Stimulant actions in rodents: implications for attention-defi cit/hyperactivity disorder treatment and potential substance abuse. Biol. Psychiatry. 57, 1391-1396.   DOI
144 Lagace, D. C., Yee, J. K., Bolanos, C. A. and Eisch, A. J. (2006) Juvenile administration of methylphenidate attenuates adult hippocampal neurogenesis. Biol. Psychiatry 60, 1121-1130.   DOI
145 Lambert, N. M. and Hartsong, C. S. (1998) Prospective study of tobacco smoking and substance dependencies among samples of ADHD and non-ADHD participants. J. Learn. Diabil. 31, 533-544.   DOI
146 Kemner, J. E., Starr, H. L., Ciccone, P. E., Hooper-Wood, C. G. and Crockett, R. S. (2005) Outcomes of OROSmethylphenidate compared with atomoxetine in childrenwith ADHD: a multi-center, randomized prospective study. Adv. Ther. 22, 498-512.   DOI
147 Kim, H. J., Park, S. H., Kyeong M. K., Ryu, J. H., Cheong, J. H. and Shin, C. Y. (2008) Ever increasing number of animal model systems for attention defi cit/hyperactivity disorder: attention please. Biomol. and Ther. 16, 312-319.   DOI
148 Kim, Y., Teylan, M. A., baron, M., Sands, A., Nairn, A. C. and Greengard, P. (2008) Methylphenidate-induced dendritic spine formation and fosB expression in nucleus accumbens. PNAS. 106, 2915-2920.
149 Kiyatkin, E. A. and Rebec, G. V. (1996) Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J. Neurophysiol. 75, 142-153.
150 Koda, K., Ago, Y., Cong, Y., Kita, Y., Takuma, K. and Matsuda, T. (2010) Effects of acute and chronic administration of atomoxetine and methylphenidate on extracellular levels of noradrenaline, dopamine and serotonin in the prefrontal cortex and striatum of mice. J. Neurochem. 114, 259-270.
151 Kollins, S. H., MacDonald, E. K. and Rush, C. R. (2001) Assessing the abuse potential of methylphenidate in nonhuman and human subjects: review. Pharmacol. Biochem. Behav. 68, 611-627.   DOI   ScienceOn
152 Kollins, S. H. (2003) Comparing the abuse potential of methylphenidate versus other stimulants: a review of available evidence and relevance to the ADHD patient. J. Clin. Psych. 64, 14-18.   DOI
153 Hope, B., Kosofsky, B., Hyman, S. E. and Nestler, E. J. (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA. 89, 5764-5768.   DOI
154 Horner, K. A., Adams, D. H., Hanson, G. R. and Keefe, K. A. (2005) Blockade of stimulant-induced preprodynorphin mRNA expression in the striatal matrix by serotonin depletion. Neurosci. 131, 67-77.   DOI
155 Hyman, S. E. (1996) Addiction to cocaine and amphetamine. Neuron 16, 901-904.   DOI
156 Hyman, S. E. and Malenka, R. C. (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat. Rev. Neurosci. 2, 695-703.   DOI
157 Jasinski, D. R., Faries, D. E., Moore, R. J., Schuh, L. M. and Allen, A. J. (2008) Abuse liability assessment of atomoxetine in a drug-abusing population. Drug Alcohol Depend. 95, 140-146.   DOI
158 Kalivas, P. W. (1993) Neurotransmitter regulation of dopamine neurons in ventral tegmental area. Brain Res. Rev. 18, 75-113.   DOI   ScienceOn