• Title/Summary/Keyword: neuronal polarity

Search Result 6, Processing Time 0.027 seconds

Interaction of Nonreceptor Tyrosine-Kinase Fer and p120 Catenin Is Involved in Neuronal Polarization

  • Lee, Seung-Hye
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.256-262
    • /
    • 2005
  • The neuronal cytoskeleton is essential for establishment of neuronal polarity, but mechanisms controlling generation of polarity in the cytoskeleton are poorly understood. The nonreceptor tyrosine kinase, Fer, has been shown to bind to microtubules and to interact with several actin-regulatory proteins. Furthermore, Fer binds p120 catenin and has been shown to regulate cadherin function by modulating cadherin-${\beta}$-catenin interaction. Here we show involvement of Fer in neuronal polarization and neurite development. Fer is concentrated in growth cones together with cadherin, ${\beta}$-catenin, and cortactin in stage 2 hippocampal neurons. Inhibition of Fer-p120 catenin interaction with a cell-permeable inhibitory peptide (FerP) increases neurite branching. In addition, the peptide significantly delays conversion of one of several dendrites into an axon in early stage hippocampal neurons. FerP-treated growth cones also exhibit modified localization of the microtubule and actin cytoskeleton. Together, this indicates that the Fer-p120 interaction is required for normal neuronal polarization and neurite development.

NELL2 Function in Axon Development of Hippocampal Neurons

  • Kim, Han Rae;Kim, Dong Hee;An, Ji Young;Kang, Dasol;Park, Jeong Woo;Hwang, Eun Mi;Seo, Eun Jin;Jang, Il Ho;Ha, Chang Man;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.581-589
    • /
    • 2020
  • Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.

Protective Effect of Extracts from Euryale ferox against Glutamate-induced Cytotoxicity in Neuronal Cells

  • Lee, Mi-Ra;Kim, Ji-Hyun;Son, Eun-Soon;Park, Hae-Ryong
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.162-166
    • /
    • 2009
  • Oxczaasssaidative stress plays an important role in neuronal cell death, which is associated with neurodegenerative conditions such as Alzheimer's and Parkinson's disease. This study evaluated the neuroprotective effect of Euryale ferox (EF) extracts against glutamate-induced cytotoxicity in hybridoma N18-RE-105 cells. Specifically, neuroprotective effects of methanol and ethanol extracts were evaluated by the MTT reduction assay. The ethanol extracts of EF displayed dose dependent protection against neuronal cell death induced by 20 mM of glutamate. Furthermore, the ethanol extracts of EF was sequentially fractionated with hexane, diethyl ether, ethyl acetate, and water layer according to degree of polarity. The hexane fractions exhibited neuroprotective effect against glutamate-stressed N18-RE-105 cells. Overall, results suggest that EF extracts can potentially be used as chemotherapeutic agents against neuronal diseases.

Effects of Lycii Fructus on Primary Cultured Chicken Brain Cells

  • Park, Mi-Jung;Chu, Eun-Hye;Lee, Heun-Pa;Kim, Young-Choong
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.325-329
    • /
    • 1991
  • Effects of Lycii Fructus on primary cultured chicken embryonic brain cells were studied by microscopic observation, determination of the activity of pyruvate dehydrogenase complex (PDHC), and syntheses of protein, RNA and DNA. The brain cells were prepared from the brains or 10-day-old chicken embryos and cultured with a deficient medium. The activity of PDHC in the brain cells cultured with a deficient medium was increased to 1.8 times by the addition of $30\;{\mu}g/ml$ of the total methanol extract of Lycii Fructus. To seek the active fraction, total methanol extract was further fractionated by the polarity. The survival rate of neuronal cells was significantly increased by the addition of $100\;{\mu}g/ml$ of the buthanol or aqueous fraction. At this concentration, the significant increase of the syntheses of protein and RNA, but not of DNA, indicates that the fractions may act on the neuronal cells which are known to be non-dividing cells.

  • PDF

Neuroprotective Effect of Extracts from Root Bark of Morus alba on Glutamate-induced Cytotoxicity in Neuronal Cells. (Glutamate가 유도하는 세포독성으로부터 신경세포를 보호하는 상백피 추출물의 효과)

  • Kim, Hyun-Jung;Kim, Ji-Hyun;Son, Eun-Soon;Lee, Jeung-Min;Park, Hae-Ryong
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.963-967
    • /
    • 2009
  • This study evaluated the neuroprotective effect of extracts from the root bark of Morus alba (MA) against glutamate-induced cytotoxicity in neuronal cells. Glutamate-induced cytotoxicity was shown by MTT reduction assay. The neuroprotective effects of methanol, ethanol, and acetone extracts from MA against glutamate-induced cytotoxicity were measured. Among the three extracts, the methanolic extracts showed the highest protective effect, as determined by the results of an morphological assay, a lactate dehydrogenase release assay. Furthermore, the methanol extracts were fractionated sequentially with hexane, diethyl ether, ethyl acetate, and water layer according to degree of polarity. The hexane fractions exhibited a neuroprotective effect against glutamate-stressed N18-RE-105 cells. Therefore, these results suggest that extracts of MA could be a new potential candidate as a protective substance against glutamate-induced cytotoxicity.

Neuroprotective Effects of Methanolic Extracts from Peanut Sprouts (땅콩나물 추출물의 신경세포 보호 효과)

  • Kim, Hyun-Jung;Kang, Jum-Soon;Park, Hae-Ryong;Hwang, Yong-Il
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.253-259
    • /
    • 2010
  • The neuroprotective effects of extracts from various parts of peanut sprouts on glutamate-induced neurotoxicity in N18-RE-105 cells were investigated. This study was performed to evaluate the neuroprotective activity of methanolic extracts from the whole (WME), heads (HME), and stems (SME) of peanut sprouts. The neuroprotective effects of these extracts were measured by MTT reduction assay, LDH release assay, phase-contrast microscopy, and flow cytometric analysis on the N18-RE-105 cells. Among these extracts, the HME showed the greatest neuroprotective effects, and was further fractionated with hexane, diethyl ether, ethyl acetate, and water, according to degree of polarity. Out of the fractionated extracts, the diethyl ether layer showed the highest activity on glutamate-induced cytotoxicity in N18-RE-105 cells. The sub-G1 DNA contents of the glutamate-induced severely apoptotic N18-RE-105s were measured by flow cytometric analysis to confirm the HME's anti-apoptotic activity. Interestingly, after incubation with 100 mg/ml of the HME, the proportion of sub-G1 cells of the glutamate-stressed N18-RE-105s had been greatly reduced, from 58.5% to 9.1%. These results imply that HME may have strong potential as a chemotherapeutic agent against neuronal diseases.