• Title/Summary/Keyword: neuronal migration

Search Result 41, Processing Time 0.023 seconds

Myosin X and Cytoskeletal Reorganization

  • Ikebe, Mitsuo;Sato, Osamu;Sakai, Tsuyoshi
    • Applied Microscopy
    • /
    • v.48 no.2
    • /
    • pp.33-42
    • /
    • 2018
  • Myosin X is one of myosin superfamily members having unique cellular functions on cytoskeletal reorganization. One of the most important cellular functions of myosin X is to facilitate the formation of membrane protrusions. Since membrane protrusions are important factors for diverse cellular motile processes including cell migration, cell invasion, path-finding of the cells, intercellular communications and so on, it has been thought that myosin X plays an important role in various processes that involve cytoskeletal reorganization including cancer progression and development of neuronal diseases. Recent studies have revealed that the unique cellular function of myosin X is closely correlated with its unique structural characteristics and motor properties. Moreover, it is found that the molecular and cellular activities of myosin X are controlled by its specific binding partner. Since recent studies have revealed the presence of various specific binding partners of myosin X, it is anticipated that the structural, biochemical and cell biological understanding of the binding partner dependent regulation of myosin X function can uncover the role of myosin X in diverse cell biological processes and diseases.

20(S)-protopanaxadiol promotes the migration, proliferation, and differentiation of neural stem cells by targeting GSK-3β in the Wnt/GSK-3β/β-catenin pathway

  • Lin, Kaili;Liu, Bin;Lim, Sze-Lam;Fu, Xiuqiong;Sze, Stephen C.W.;Yung, Ken K.L.;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.475-482
    • /
    • 2020
  • Background: Active natural ingredients, especially small molecules, have recently received wide attention as modifiers used to treat neurodegenerative disease by promoting neurogenic regeneration of neural stem cell (NSC) in situ. 20(S)-protopanaxadiol (PPD), one of the bioactive ingredients in ginseng, possesses neuroprotective properties. However, the effect of PPD on NSC proliferation and differentiation and its mechanism of action are incompletely understood. Methods: In this study, we investigated the impact of PPD on NSC proliferation and neuronal lineage differentiation through activation of the Wnt/glycogen synthase kinase (GSK)-3β/β-catenin pathway. NSC migration and proliferation were investigated by neurosphere assay, Cell Counting Kit-8 assay, and EdU assay. NSC differentiation was analyzed by Western blot and immunofluorescence staining. Involvement of the Wnt/GSK3β/β-catenin pathway was examined by molecular simulation and Western blot and verified using gene transfection. Results: PPD significantly promoted neural migration and induced a significant increase in NSC proliferation in a time- and dose-dependent manner. Furthermore, a remarkable increase in anti-microtubule-associated protein 2 expression and decrease in nestin protein expression were induced by PPD. During the differentiation process, PPD targeted and stimulated the phosphorylation of GSK-3β at Ser9 and the active forms of β-catenin, resulting in activation of the Wnt/GSK-3β/β-catenin pathway. Transfection of NSCs with a constitutively active GSK-3β mutant at S9A significantly hampered the proliferation and neural differentiation mediated by PPD. Conclusion: PPD promotes NSC proliferation and neural differentiation in vitro via activation of the Wnt/GSK-3β/β-catenin pathway by targeting GSK-3β, potentially having great significance for the treatment of neurodegenerative diseases.

Development of Scar Improving Materials using Enkephalin Derivatives (엔케팔린 유도체를 이용한 흉터 개선 소재 개발)

  • Kim, Yang Woo;Kim, Hyoung Shik;Kim, Soo-Yun;Choi, Yun-Hee;Moh, Sang Hyun;Cheon, Young Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5336-5342
    • /
    • 2015
  • Although demand for scar treatment has been rising as our quality of life is improved, most scar treatment products rely on importation. Enkephalin is one of the neuropeptides secreted from neuronal ends. As both skin and neuron are derived from the exoderm during the development process, skin cells express opioid receptors as neuronal cells do. Opioid receptors are categorized into three types, mu(m)-, delta(d)-, and kappa(k)- opioid receptors, all of which are directly involved in the wound healing process. In this study, enkephalin derivatives are synthesized by Alanin Scan and their efficacy was evaluated and compared. In vitro wound healing effects, stimulatory effects of collagen synthesis, and skin hydration effects were also evaluated and confirmed. Among Enkephalin derivatives, AS13 showed highest wound healing effect.

Effect of Parthenogenetic Mouse Embryonic Stem Cell (PmES) in the Mouse Model of Huntington′s Disease

  • 이창현;김용식;이영재;김은영;길광수;정길생;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.80-80
    • /
    • 2003
  • Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by marked cell death in the striatum and cortex. Stereotaxic injection of quinolinic acid (QA) into striatum results in a degeneration of GABAergic neurons and exhibits abnormal motor behaviors typical of the illness. The objective of this study was carried out to obtain basic information about whether parthenogenetic mouse embryonic stem (PmES) cells are suitable for cell replacement therapy of HD. To establish PmES cell lines, hybrid F1 (C57BL/6xCBA/N) mouse oocytes were treated with 7% ethanol for 5 min and cytochalasin-B for 4 hr to initiate spontaneous cleavage. Thus established PmES cells were induced to differentiate using bFGF (20ng/ml) followed by selection of neuronal precursor cells for 8 days in N2 medium. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days, then a final differentiation step in N2 medium for 7 days. To establish recipient animal models of HD, young adult mice (7 weeks age ICR mice) were lesioned unilaterally with a stereotaxic injection of QA (60 nM) into the striatum and the rotational behavior of the animals was tested using apomorphine (0.1mg/kg, IP) 7 days after the induction of lesion. Animals rotating more than 120 turns per hour were selected and the differentiated PmES cells (1$\times$10$^4$cells/ul) were implanted into striatum. Four weeks after the graft, immunohistochemical studies revealed the presence of cells reactive to anti-NeuN antibody. However, only a slight improvement of motor behavior was observed. By Nissl staining, cell mass resembling tumor was found at the graft site and near cortex which may explain the slight behavioral improvement. Detailed experiment on cell viability, differentiation and migration explanted in vivo is currently being studied.

  • PDF

Congenital central hypoventilation syndrome combined with Hirschsprung disease diagnosed in the neonatal period (신생아에서 진단된 Hirschsprung 병을 동반한 congenital central hypoventilation syndrome 1례)

  • Choi, Jin Hyun;Oh, Jin Hee;Kim, Jong-Hyun;Koh, Dae Kyun;Hong, Seung-Chul
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.4
    • /
    • pp.446-450
    • /
    • 2006
  • Congenital central hypoventilation syndrome (CCHS) or Ondine's curse is a very rare sleep disorder that is the result of a congenital failure of the autonomic control of ventilation caused by insensitivity of the chemoreceptor to hypercapnea during sleep. Gastrointestinal motility disorders, particularly a congenital megacolon (Hirschsprung disease) is often combined with CCHS. This combination can be explained by a defect in the migration of neuronal cells from the neural crest (neurocristopathy) during the intrauterine period. A diagnosis of CCHS is made by confirming the failure of adequate ventilation in response to hypercapnea and hypoxia during sleep and the exclusion of other diseases. Young infants frequently show atypical clinical courses, and their conditions are frequently complicated with the long-term sequela of hypoxemic episodes. Therefore, a high index of suspicion and active treatment with mechanical ventilation are important for reducing recurrent hypoxemic episodes in the neonatal period. This paper reports the follow up of a case of CCHS in a neonate who showed frequent intractable apnea and cyanosis and was given artificial mechanical ventilation during sleep.

A Study of Ulegyria as Pathognomonic Aspects of Congenital Bilateral Perisylvian Syndrome (선천성 양측성 Sylvius 주위 피질 증후군의 병인론으로서의 뇌회반흔증에 대한 고찰)

  • Kim, Han-Woong;Cho, Kyu-Yong;Lee, Min-Cheol;Kim, Hyung-Ihl;Woo, Young-Jong;Kim, Myeong-Kyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.2
    • /
    • pp.124-128
    • /
    • 2005
  • Objective: Congenital bilateral perisylvian syndrome(CBPS) has been defined as a characteristic malformative perisylvian polymicrogyria(PMG) in patients with clinical symptoms of pseudobulbar palsy and epileptic seizures. For the present study, we investigate clinicopathologic features of CBPS associated with timing of lesion formation. Methods: Clinicopathologic features of CBPS from 6 patients with surgical resection of the cerebral lesions due to medically intractable seizures were studied. Results: Seizure onset ranged from 1 to 10years (average 6.7years) of age, and average duration of seizure was 23years. All had complex partial seizures, and two patients had additional tonic clonic seizures. Magnetic resonance (MR) images showed polymicrogyria, atropic gyri with gliosis. In the histopathologic examination, the cortical lesions revealed features of ulegyria; atrophic and sclerotic gyri, laminar loss of neurons, extensive lobular gliosis throughout the gray and white matter, neuronoglial nodule formation, and many amyloid bodies. Unlayered or four-layered PMG was not identified. Conclusion: Above data suggest that CBPS might be caused by ulegyria resulting from developmental cortical defect during early fetal stage or acquired hypoxic/ischemic injury in prenatal or postnatal life.

Effects of Ethosuximide on the Pilocarpine Induced Seizure in Rat Model of Neuronal Migration Disorder

  • Kim, Byung-Kon;Choi, In-Sun;Cho, Jin-Hwa;Jang, Il-Sung;Lee, Maan-Gee;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.235-242
    • /
    • 2006
  • Cortical malformation-associated epileptic seizures are resistant to conventional anticonvulsant drugs. Relatively little research has been conducted on the effects of antiepileptic drugs (AEDs) on seizure activity in a rat model of dysplasia. We have used rats exposed to methylazoxymethanol acetate (MAM) in utero, an animal model featuring nodular heterotopia, to investigate the effects of ethosuximide (ETX) in the dysplastic brain. Pilocarpine was used to induce acute seizure in MAM-exposed and age-matched vehicle-injected control animals. Field potential recordings were used to monitor the amplitude and number of population spikes, and paired pulse inhibition in response to stimulation of the commissural pathway. Pharmaco-resistance was tested by measuring seizure latencies after pilocarpine administration (320 mg/kg, Lp.) with and without pre-treatment with ETX. Pre-treatment with 300 mg of ETX significantly prolonged the latency to the status epilepticus (SE) in both control and MAM-treated groups. Pre-treatment with ETX 100mg and ETX 200 mg had little effect in MAMexposed rats. However, ETX 200 mg prolonged the latency to the SE in control groups. Spontaneous field potential and secondary after-discharges were higher for MAM-treated rat in comparison with control rats injects with ETX. The main findings of this study are that acute seizures initiated in MAM-exposed rats are relatively resistant to standard ETX assessed in vivo. These data suggest that ETX do not prolong seizure latencies in MAM-rats exposed to pilocarpine.

Studies on the phosphotyrsine-proteins in the rat cerbellar PSD fraction (흰쥐 소뇌 연접후치밀질내 phosphotryrosine 함유 단백질에 대한 연구)

  • 전일수;함소희;고복현
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.198-204
    • /
    • 1997
  • The signal transduction through tyrosine kinases play important roles in neuronal development and synaptic regulation. We carried out immunoblot analyses to study tyrosine=phosphorylated proteins in the rat cerebellar postsynaptic density (PSD), a protein-rich cytoskeletal specialization underlying beneath the postsynaptic membrane. The overall protein composition of cerebellar PSD fractions was similar to that of the forebrain’s and only a few bands were different in Coomassie stain. Immunoblot analyses with phosphtyrosine-specific antiboy (4G10) showed that there are many more tyrosine-phosphorylated proteins in the cerebellar PSD than in the forebrain PSD. Interestiingly, a major phosphotyrosine signals in cerebellar PSD fractions was associated with a 50 kD molecular size, named as PSD-50. Migration of PSD-50 coincided with that of $\alpha$CaMKII and remained in the pellet fraction after N-octylglucoside extraction. These results indicate that tyrosine phosphorylation is important in cerebellar synaptic regulation and that the PSD-50 may be same as $\alpha$CaMKIIor a new protein which is a major substrate of tyrosine kinase.

  • PDF

Transplantation of Marrow Stromal Cells into the Developing Mammal Retina (발생 중인 포유류 망막으로 골수기질세포의 이식)

  • Lee, Eun-Shil;Kwon, Oh-Ju;Ye, Eun-Ah;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.4
    • /
    • pp.541-548
    • /
    • 2013
  • Purpose: Marrow stromal cells (MSCs) have been known for their potential to trans-differentiate into neural and glial cells in vitro and in vivo. To investigate the influence of the developing host environment on the survival and morphological and molecular differentiation, murine MSCs transplanted into the eye of Brazilian opossum (Monodelphis domestica). Methods: Enhanced green fluorescent protein (GFP) - expressing MSCs were transplanted into developing Brazilian opossums. Animals were allowed to survive for up to 4 weeks after transplantation, at which time the eyes were prepared for immunohistochemical analysis. Results: Some transplanted MSCs survived and showed morphological differentiation into neural cells with some processes within the host vitreous chamber. Some transplanted cells expressed class III ${\beta}$-tubulin (TuJ1, a marker for neuronal cells) or glial fibrillary acid protein (GFAP, a marker for glial cells) or Nestin (a marker for neural stem cells). In addition, some transplanted cells were located in ganglion cell layer but did not show morphological and molecular differentiation. Conclusions: Our result show that the most effective stage of development for transplantation into the retina was postnatal day 16, which retinas developmentally corresponded to postnatal day 4-5 days mouse retina based on cell differentiation and lamination patterns. The present findings suggest that the age of the host appears to play a key role in determining cell fate in vivo.

Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide (모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구)

  • Kim Hyun Hee;Rho Sam Woong;Na Youn Gin;Bae Hyun Su;Shin Min Kyu;Kim Chung Suk;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.