• 제목/요약/키워드: neuronal gene

검색결과 198건 처리시간 0.028초

쥐의 뇌실 하 영역(SVZ) 신경 줄기 세포의 신경 세포로의 분화 과정에서 Nox4의 역할 (Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells)

  • 박기엽;나예린;김만수
    • 생명과학회지
    • /
    • 제26권1호
    • /
    • pp.8-16
    • /
    • 2016
  • 적절한 농도의 활성산소종(ROS)은 병원체에 대한 세포의 방어, 신호 전달, 세포 성장 및 유전자 발현을 포함한 다양한 정상 세포 기능을 매개한다. 최근의 연구는 ROS와 ROS를 생성하는 NADPH 산화 효소(Nox)가 성인 쥐 뇌의 뇌실 하 영역(SVZ)에 있는 신경 줄기세포의 자가 복제와 신경 세포 분화에 중요하다는 것을 보여 주었다. 본 연구에서 세포 내 ROS가 갓 태어난 쥐의 뇌에서 적출되어 배양된 SVZ 신경 줄기세포에서 검출된 것으로 나타났다. Nox 유사 유전자들 중 Nox4가 배양된 세포에서 주로 발현되었고, Nox1과 Nox2는 거의 발현되지 않았다. 또한, Nox4 유전자는 신경 세포 분화 동안 최대 10배까지 발현이 크게 증가하였다. Immunocytochemistry결과 Nox4 단백질은 신경 세포 특이적인 tubulin인 Tuj1-양성 신경 세포에서 주로 발견되었다. 이와 맥을 같이 하여, 내인성 ROS는 분화 후 축삭돌기를 가지고 있으며 신경 세포로 보이는 세포에서만 검출되었다. 또한, ROS를 제거하는N-acetyl cysteine에 의해 세포 산화 환원 상태가 교란되었을 때, 신경 세포로의 분화가 크게 감소하였다. 마지막으로, shRNA를 이용하 여 Nox4를 knockdown한 세포에서 신경 세포로의 분화가 감소하였다. 이러한 연구 결과는 Nox4가 갓 태어난 쥐의 SVZ 신경 줄기 세포의 주요한 ROS 생성 효소이고, Nox4에 의한 ROS생성이 신경 세포 분화에 중요하다는 것을 암시한다.

Damaged Neuronal Cells Induce Inflammatory Gene Expression in Schwann Cells: Implication in the Wallerian Degeneration

  • Lee, Hyun-Kyoung;Choi, Se-Young;Oh, Seog-Bae;Park, Kyung-Pyo;Kim, Joong-Soo;Lee, Sung-Joong
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.87-92
    • /
    • 2006
  • Schwann cells play an important role in peripheral nerve regeneration. Upon nerve injury, Schwann cells are activated and produce various proinflammatory mediators including IL-6, LIF and MCP-1, which result in the recruitment of macrophages and phagocytosis of myelin debris. However, it is unclear how the nerve injury induces Schwann cell activation. Recently, it was reported that necrotic cells induce immune cell activation via toll-like receptors (TLRs). This suggests that the TLRs expressed on Schwann cells may recognize nerve damage by binding to the endogenous ligands secreted by the damaged nerve, thereby inducing Schwann cell activation. To explore the possibility, we stimulated iSC, a rat Schwann cell line, with damaged neuronal cell extracts (DNCE). The stimulation of iSC with DNCE induced the expression of various inflammatory mediators including IL-6, LIF, MCP-1 and iNOS. Studies on the signaling pathway indicate that $NF-{\kappa}B$, p38 and JNK activation are required for the DNCE-induced inflammatory gene expression. Furthermore, treatment of either anti-TLR3 neutralizing antibody or ribonuclease inhibited the DNCE-induced proinflammatory gene expression in iSC. In summary, these results suggest that damaged neuronal cells induce inflammatory Schwann cell activation via TLR3, which might be involved in the Wallerian degeneration after a peripheral nerve injury.

Mitochondrial Uncoupling Attenuates Age-Dependent Neurodegeneration in C. elegans

  • Cho, Injeong;Song, Hyun-Ok;Cho, Jeong Hoon
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.864-870
    • /
    • 2017
  • The uncoupling protein 4 (ucp-4) gene is involved in age-dependent neurodegeneration in C. elegans. Therefore, we aimed to investigate the mechanism underlying the association between mitochondrial uncoupling and neurodegeneration by examining the effects of uncoupling agents and ucp-4 overexpression in C. elegans. Treatment with either DNP or CCCP improved neuronal defects in wild type during aging. Uncoupling agents also restored neuronal phenotypes of ucp-4 mutants to those exhibited by wild type, while ucp-4 overexpression attenuated the severity of age-dependent neurodegeneration. Neuronal improvements were further associated with reductions in mitochondrial membrane potentials. However, these age-dependent neuroprotective effects were limited in mitophagy-deficient mutant, pink-1, background. These results suggest that membrane uncoupling can attenuate age-dependent neurodegeneration by stimulating mitophagy.

PIWI Proteins and piRNAs in the Nervous System

  • Kim, Kyung Won
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.828-835
    • /
    • 2019
  • PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.

Molecular diagnosis of spinal muscular atrophy

  • Lee, Ki-Sun;Hwang, Hee-Yu;Lee, Key-Hyoung;Park, Moon-Sung;Hahn, Si-Houn;Hong, Chang-Ho
    • Journal of Genetic Medicine
    • /
    • 제1권1호
    • /
    • pp.33-37
    • /
    • 1997
  • Spinal muscular atrophy (SMA) is the second most common fatal disease of childhood with autosomal dominant mode of inheritance, and in its less severe form the third most common neuromuscular disease of childhood after Duchenne muscular dystrophy. The genetic defect was found to be on the long arm of chromosome 5 (5q11.2-q13.3) where many genes and microsatellite markers were missing. One of the most important genes is the Survival Motor Neuron (SMN) gene which is homozygously missing in 90% of SMA patients. Another important gene, the Neuronal Apoptosis Inhibitory Protein (NAIP) gene was found to be defective in 67% of SMA type I patients. Studies so far suggest SMA occurs when the genes on the long arm of chromosome 5 are mutated or deleted. Recently our hospital encountered 2 SMA patients of type I and II respectively. These patients both had homozygously defective SMN genes but intact NAIP genes. We are reporting these cases with bibliographic review and discussion. Korean SMA patients presumably have defects in SMN genes similar to those found in European patients, although the significance of NAIP genes remains to be established. SMN gene defects can be easily diagnosed using PCR and restriction enzymes, and this method could be applied towards convenient prenatal diagnosis and towards screening for family members at risk.

  • PDF

Highly Efficient Gene Delivery into Transfection-Refractory Neuronal and Astroglial Cells Using a Retrovirus-Based Vector

  • Kim, Byung Oh;Pyo, Suhkneung
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.451-454
    • /
    • 2005
  • Introduction of foreign genes into brain cells, such as neurons and astrocytes, is a powerful approach to study the gene function and regulation in the neuroscience field. Calcium phosphate precipitates have been shown to cause cytotoxicity in some mammalian cells and brain cells, thus leading to low transfection efficiency. Here, we describe a retrovirus-mediated gene delivery method to transduce foreign genes into brain cells. In an attempt to achieve higher gene delivery efficiency in these cells, we made several changes to the original method, including (1) use of a new packaging cell line, Phoenix ampho cells, (2) transfection of pMX retroviral DNA, (3) inclusion of 25 mM chloroquine in the transduction, and (4) 3- 5 h incubation of retroviruses with target cells. The results showed that the modified protocol resulted in a range of 40- 60% gene delivery efficiency in neurons and astrocytes. Furthermore, these results suggest the potential of the retrovirus-mediated gene delivery protocol being modified and adapted for other transfection-refractory cell lines and primary cells.

Differential Expression of Ubiquitin-Specific Protease 16 Gene by Methylprednisolone in Neuronal Cells

  • ;;;;;김성환
    • 대한의생명과학회지
    • /
    • 제16권2호
    • /
    • pp.105-112
    • /
    • 2010
  • Methylprednisolone (MPD) is a synthetic glucocorticoid drug used in treatment of many neurological diseases and neurotraumas, including spinal cord injuries. Little is known of the mechanism of MPD in neuronal cells, particularly the genetic expression aspect. DD-PCR was used in identification of genes expressed during MPD treatment of PC12 cells. We have isolated 3 predicted up- or down-regulated genes, which are differentially expressed in neurons by MPD. One of these genes, USP16 (ubiquitin specific protease 16), is the deubiquitinating enzyme that is up-regulated by MPD in neurons. In order to observe the effect of MPD on USP16 gene expression, PC12 cells were treated under several experimental conditions, including endoplasmic reticulum stress drugs. We have isolated the total RNAs in PC12 cells and detected USP16 and ER related genes by RT-PCR. Because its expression pattern is similar to expression of ER chaperons, USP16 gene expression is strongly associated with unfolded protein response. A meaningful negative effect on each tissue treated by methylprednisolone is not shown in vivo. USP16 gene expression is suppressed by LY294002 (phosphatidylinositol 3-kinase inhibitor), which suggests that USP16 gene expression is regulated by the phosphatidylinositol 3-kinase pathway.

Early Growth Response 3 유전자와 양극성 장애 간 유전연합 연구 (Genetic Association Study of the Common Genetic Variation of Early Growth Response 3 Gene With Bipolar Disorder in Korean Population)

  • 장문영;안용민;김용식;김세현
    • 생물정신의학
    • /
    • 제29권2호
    • /
    • pp.33-39
    • /
    • 2022
  • Objectives The early growth response 3 (EGR3) gene located in chromosome 8p21.3 is one of the susceptibility loci in many psychiatric disorders. EGR3 gene plays critical roles in signal transduction in the brain, which is involved in neuronal plasticity, neuronal development, learning, memory, and circadian rhythms. Recent studies have suggested EGR3 as a potential susceptibility gene for bipolar disorder (BPD). However, this requires further replication with an independent sample set. Methods To investigate the genetic role of EGR3 in Korean patients, we genotyped six single-nucleotide polymorphisms (SNPs) in the chromosome region of EGR3 in 1076 Korean BPD patients and 773 healthy control subjects. Results Among the six examined SNPs of EGR3 (rs17088531, rs1996147, rs3750192, rs35201266, rs7009708, rs1008949), SNP rs35201266, rs7009708, rs1008949 showed a significant association with BPD (p = 0.0041 for rs35201266 and BPD2, p = 0.0074 for rs1008949 and BPD, p = 0.0052 for rs1008949 and BPD1), which withstand multiple testing correction. In addition, the 'G-C-C-C' and 'G-C-G-C' haplotypes of EGR3 were overrepresented in the patients with BPD (p = 0.0055, < 0.0001, respectively) and the 'G-T-G-C' haplotype of EGR3 was underrepresented in patients with BPD (p = 0.0040). Conclusions In summary, our study supports the association of EGR3 with BPD in Korean population sample, and EGR3 could be suggested as a compelling susceptibility gene in BPD.

Forebrain glutamatergic neuron-specific Ctcf deletion induces reactive microgliosis and astrogliosis with neuronal loss in adult mouse hippocampus

  • Kwak, Ji-Hye;Lee, Kyungmin
    • BMB Reports
    • /
    • 제54권6호
    • /
    • pp.317-322
    • /
    • 2021
  • CCCTC-binding factor (CTCF), a zinc finger protein, is a transcription factor and regulator of chromatin structure. Forebrain excitatory neuron-specific CTCF deficiency contributes to inflammation via enhanced transcription of inflammation-related genes in the cortex and hippocampus. However, little is known about the long-term effect of CTCF deficiency on postnatal neurons, astrocytes, or microglia in the hippocampus of adult mice. To address this, we knocked out the Ctcf gene in forebrain glutamatergic neurons (Ctcf cKO) by crossing Ctcf-floxed mice with Camk2a-Cre mice and examined the hippocampi of 7.5-10-month-old male mice using immunofluorescence microscopy. We found obvious neuronal cell death and reactive gliosis in the hippocampal cornu ammonis (CA)1 in 7.5-10-month-old cKO mice. Prominent rod-shaped microglia that participate in immune surveillance were observed in the stratum pyramidale and radiatum layer, indicating a potential increase in inflammatory mediators released by hippocampal neurons. Although neuronal loss was not observed in CA3, and dentate gyrus (DG) CTCF depletion induced a significant increase in the number of microglia in the stratum oriens of CA3 and reactive microgliosis and astrogliosis in the molecular layer and hilus of the DG in 7.5-10-month-old cKO mice. These results suggest that long-term Ctcf deletion from forebrain excitatory neurons may contribute to reactive gliosis induced by neuronal damage and consequent neuronal loss in the hippocampal CA1, DG, and CA3 in sequence over 7 months of age.

Statistical Tests for Time Course Microarray Experiments

  • 박태성;이성곤;최호식;이승연;이용성
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.85-90
    • /
    • 2002
  • Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time we are interested in testing gene expression profiles for different experimental groups. We propose a statistical test based on the ANOVA model to identify genes that have different gene expression profiles among experimental groups in time-course experiments. Using this test, we can detect genes that have different gene expression profiles among experimental groups. The proposed model is illustrated using cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.

  • PDF