• 제목/요약/키워드: neuronal cells

검색결과 1,096건 처리시간 0.023초

The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System

  • Kim, Seunghee;Lee, Minjae;Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.45-57
    • /
    • 2020
  • In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson's disease, and Alzheimer's disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.

Apoptotic Cell Death in TrkA-overexpressing Cells: Kinetic Regulation of ERK Phosphorylation and Caspase-7 Activation

  • Jung, Eun Joo;Kim, Deok Ryong
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.12-17
    • /
    • 2008
  • The TrkA tyrosine kinase is activated by autophosphorylation in response to NGF, and plays an important role in cell survival, differentiation, and apoptosis. To investigate its role in cell fate determination, we produced stable TrkA-inducible SK-N-MC and U2OS cell lines using the Tet-On system. Interestingly, TrkA overexpression induced substantial cell death even in the absence of NGF, by stimulating ERK phosphorylation and caspase-7 activation leading to PARP cleavage. TrkA-mediated cell death was shown by the annexin-V binding assay to be, at least in part, apoptotic in both SK-N-MC and U2OS cells. Furthermore, the truncated form (p18) of Bax accumulated in the TrkA-induced cells, suggesting that TrkA induces mitochondria-mediated apoptosis. NGF treatment augmented the cell death induced by TrkA overexpression. This TrkA-induced cell death was blocked by the tyrosine kinase inhibitors, K-252a and GW441756. Moreover, TrkA overexpression inhibited long-term proliferation of both the neuronal SK-N-MC cells and the non-neuronal U2OS cells, suggesting a potential role of TrkA as a tumor suppressor.

청간해주환(淸肝解酒丸)의 알코올 유도 뇌신경세포 손상에 대한 보호 효과 (Effect of Chungganhaeju-hwan in Ethanol-induced Neuronal Cell Damage)

  • 주미선;김효근;조해정;심재종;전용준;오명숙
    • 대한본초학회지
    • /
    • 제26권3호
    • /
    • pp.75-82
    • /
    • 2011
  • Objectives : In this study, we evaluated the effect of Chungganhaeju-hwan(CGHJH) on hydrogen peroxide($H_2O_2$)-induced and ethanol(EtOH)-induced neuronal damage in vitro and in vivo, respectively. Methods:We carried out the anti-oxidant effects of CGHJH against hydrogen peroxide($H_2O_2$)-induced toxicity in HT22 and PC12 cells using thiazolyl blue tetrazolium bromide. Then, to investigate the protective effect on CGHJH against EtOH-induced memory impairment and hippocampal cell damage in male ICR mice, we performed novel object recognition test(NORT), and analysed the brain tissues after immunohistochemistry and western blotting. Results:CGHJH showed protective effect from $H_2O_2$-induced cell toxicity at doses of $1\sim100{\mu}g$/mL in both HT22 and PC12 cells. CGHJH had also recovery effect from EtOH-induced memory impairment in ICR mice from NORT and it protected hippocampal cells against EtOH toxicity in the result of cresyl violet and NeuN immunoreactivity. Conclusion : These results demonstrate that CGHJH has protective effect in neuronal cells against $H_2O_2$ and EtOH toxicities and this effect could be a main role of recovery effect on EtOH-induced memory loss.

고삼 (苦蔘, Sophorae Radix) 70% 에탄올 추출물의 비수용성 분획물의 Heme Oxygenase-1 발현을 통한 뇌세포 보호 작용 (Neuroprotective Effect of the Water-insoluble fraction of Roots of Sophora flavescens 70% Ethanolic Extract on Glutamate-Induced Oxidative Damage in Mouse Hippocampal HT22 Cells)

  • 이영숙
    • 생약학회지
    • /
    • 제42권3호
    • /
    • pp.276-281
    • /
    • 2011
  • Oxidative stress or the accumulation of reactive oxygen species (ROS) leads neuronal cellular death and dysfunction, and it contributes to neuronal degenerative disease such as Alzheimer's disease, Parkinson's disease and stroke. Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as epilepsy and ischemia. Heme oxygenase-1 (HO-1) enzyme plays an important role of cellular antioxidant system against oxidant injury. The expression of HO-1 has cytoprotective effects in glutamate-induced oxidative cytotoxicity in HT22 cells. The induction of HO-1 is primarily regulated at the transcriptional level, and its induction by various inducers is related to the nuclear transcription factor-E2-related factor 2 (Nrf2). Nrf2 is a master regulator of the antioxidant response. NNMBS008, the water-insoluble fraction of the 70% EtOH extract of roots of Sophora flavescens, showed dominant neuroprotective effects on glutamate-induced neurotoxicity in mouse hippocampal HT22 cells by induced the expression of HO-1 and increased HO activity. In mouse hippocampal HT22 cells, NNMBS008 makes the nuclear accumulation of Nrf2 pathway. In conclusion, the waterinsoluble fraction of the 70% EtOH extract of roots of S. flavescens (NNMBS008) significantly protect glutamate-induced oxidative damage by induction of HO-1 via Nrf2 pathway in mouse hippocampal HT22 cells. These results suggest that these extracts could be the effective candidates for the treatment of ROS-related neurological diseases.

Effects of Resveratrol and trans-3,5,4'-Trimethoxystilbene on Glutamate-Induced Cytotoxicity, Heme Oxygenase-1, and Sirtuin 1 in HT22 Neuronal Cells

  • Kim, Dae-Won;Kim, Young-Mi;Kang, Sung-Don;Han, Young-Min;Pae, Hyun-Ock
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.306-312
    • /
    • 2012
  • Resveratrol (trans-3,5,4'-trihydroxystilbene) has received considerable attention recently for the potential neuroprotective effects in neurodegenerative disorders where heme oxygenase-1 (HO-1) and sirtuin 1 (SIRT1) represent promising therapeutic targets. Resveratrol has been known to increase HO-1 expression and SIRT1 activity. In this study, the effects of resveratrol and trans-3,5,4'-trimethoxystilbene (TMS), a resveratrol derivative, on cytotoxicity caused by glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation have been investigated by using murine hippocampal HT22 cells, which have been widely used as an in vitro model for investigating glutamate-induced neurotoxicity. Resveratrol protected HT22 neuronal cells from glutamate-induced cytotoxicity and increased HO-1 expression as well as SIRT1 activity in a concentration-dependent manner. Cytoprotection afforded by resveratrol was partially reversed by the specific inhibition of HO-1 expression by HO-1 small interfering RNA and the nonspecific blockage of HO-1 activity by tin protoporphyrin IX, but not by SIRT1 inhibitors. Surprisingly, TMS, a resveratrol derivative with methoxyl groups in lieu of the hydroxyl groups, and trans-stilbene, a non-hydroxylated analog, failed to protect HT22 cells from glutamate-induced cytotoxicity and to increase HO-1 expression and SIRT1 activity. Taken together, our findings suggest that the cytoprotective effect of resveratrol was at least in part associated with HO-1 expression but not with SIRT1 activation and, importantly, that the presence of hydroxyl groups on the benzene rings of resveratrol appears to be necessary for cytoprotection against glutamate-induced oxidative stress, HO-1 expression, and SIRT1 activation in HT22 neuronal cells.

Apigenin Ameliorates Oxidative Stress-induced Neuronal Apoptosis in SH-SY5Y Cells

  • Kim, Yeo Jin;Cho, Eun Ju;Lee, Ah Young;Seo, Weon Taek
    • 한국미생물·생명공학회지
    • /
    • 제49권2호
    • /
    • pp.138-147
    • /
    • 2021
  • The overproduction of reactive nitrogen species (RNS) and reactive oxygen species (ROS) causes oxidative damage to neuronal cells, leading to the progression of neurodegenerative diseases. In this study, we determined the nitric oxide radical (NO), hydroxyl radical (·OH), and superoxide anion radical (O2-) scavenging activities of apigenin. Our results showed that apigenin exhibited remarkable, concentration-dependent ·OH, O2-, and NO radical scavenging activities. Particularly, apigenin indicated the strongest ·OH radical scavenging activity with 93.38% in the concentration of 100 µM. Furthermore, we also investigated the protective effects of apigenin against hydrogen peroxide (H2O2)-induced oxidative stress in SH-SY5Y cells. The H2O2 treatment resulted in a significant decrease in cell viability, as well as an increase in lactate dehydrogenase (LDH) release and ROS production compared with the H2O2-nontreated SH-SY5Y cells. However, the cell viability significantly increased in the apigenin-treated group, as well as inhibited ROS generation and LDH release compared with the H2O2-induced control group. To elucidate the protective mechanisms of apigenin against oxidative stress in SH-SY5Y, we analyzed the apoptosis-related protein expression. The apigenin treatment resulted in the downregulated expression of apoptosis-related protein markers, such as cytochrome C, cleaved caspase-3, poly (ADP)-ribose polymerase (PARP), and B-cell lymphoma 2-associated X (Bax), as well as the upregulated expression of anti-apoptosis markers such as B-cell lymphoma 2 (Bcl-2). In this study, we report that apigenin exhibits a neuroprotective effect against oxidative stress in SH-SY5Y cells. These results suggest that apigenin may be considered as a potential agent for neurodegenerative disease prevention.

국민 건강보험 급여 한약 처방 56종의 치매 주요 생리지표 및 신경세포 변화에 대한 효능 비교 연구 (Screening of 56 Herbal formulas covered by the National Health Insurance Service on Dementia-related Factors)

  • 임혜선;김유진;김윤주;김부여;정수진
    • 대한한의학회지
    • /
    • 제39권3호
    • /
    • pp.1-16
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the effects of 56 herbal formulae covered by the National Health Insurance Corporation (NHIC) on dementia-related biomarkers and neuronal cell changes. Methods: The 56 herbal formulae were extracted with 70% ethanol at $100^{\circ}C$ for 2 h. The antioxidant properties was measured by radical scavenging assay using ABTS+ radical. The acetylcholinesterase (AChE) activity was tested by Ellman's assay and $amyloid-{\beta}$ ($A{\beta}$) aggregation was determined using fluorescence method. To estimate the inhibitory effects of herbal formulae on neuronal cell death and inflammation using HT22 hippocampal cells and BV-2 microglia, respectively. Results: Among the 56 herbal formulae, Dangguiyukhwangtang, Banhasasimtang, Samhwangsasimtang, Cheongwiesan, Hwangryunhaedoktang, Banhabaekchulchunmatang, Jaeumganghwatang, Cheongseoikgitang, and Hoechunyanggyuksan has a significant inhibitory effects on acetylcholinesterase (AChE) activity. Doinseunggitang and Samhwangsasimtang exerted the effect on the inhibition of $amyloid-{\beta}$ ($A{\beta}$) aggregation. Additionally, 10 herbal formulae affected AChE and $A{\beta}$ aggregation revealed antioxidant activity as well as neuroprotective and anti-neuroinflammation effects in neuronal cell lines. Conclusions: 10 herbal formulae that have been shown to be effective against the major dementia markers have been shown to have antioxidant activity, neuronal cell protection and inhibition of brain inflammation. Further investigation of these herbal formulae will need to be validated in dementia animal models.

Neurogenesis and neuronal migration of dopaminergic neurons during mesencephalon development in mice

  • Kim, Mun-ki;Lee, Si-Joon;Vasudevan, Anju;Won, Chungkil
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.125-129
    • /
    • 2018
  • Dopaminergic neurons are one of the major neuronal components in the brain. Mesencephalon dopamine (DA) neurogenesis takes place in the ventricular zone of the floor plate, when DA progenitors divide to generate postmitotic cells. These cells migrate through the intermediate zone while they differentiate and become DA neurons on reaching the mantle zone. However, neurogenesis and neuronal migration on dopaminergic neurons remain largely unexplored in the mesencephalon development. This study presents neurogenesis and neuronal migration patterns of dopaminergic neurons during mesencephalic development of the mouse. Neurons from embryonic day (E) 10-14 were labelled by a single injection of 5-bromodeoxyuridine and immunohistochemistry was performed. The neurogenesis occurred mainly at the E10 and E11, which was uniformly distributed in the mesencephalic region, but neurons after E13 were observed only in the dorsal mesencephalon. At the postnatal day 0 (P0), E10 generated neurons were spread out uniformly in the whole mesencephalon whereas E11-originated neurons were clearly depleted in the red nucleus region. DA neurons mainly originated in the ventromedial mesencephalon at the early embryonic stage especially E10 to E11. DA neurons after E12 were only observed in the ventral mesencephalon. At E17, E10 labelled neurons were only observed in the substantia nigra (SN) region. Our study demonstrated that major neurogenesis occurred at E10 and E11. However, neuronal migration continued until neonatal period during mesencephalic development.

Alpha-lipoic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced cell injury by inhibiting autophagy and apoptosis

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Lim, HyangI;Park, Jong-Hyun;Yang, Kwang Yeol;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Chun, Hong Sung;Lee, Dong-Seol;Park, Joo-Cheol;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.15-22
    • /
    • 2021
  • Alpha-lipoic acid (ALA) is a naturally occurring antioxidant and has been previously used to treat diabetes and cardiovascular disease. However, the autophagy effects of ALA against oxidative stress-induced dopaminergic neuronal cell injury remain unclear. The aim of this study was to investigate the role of ALA in autophagy and apoptosis against oxidative stress in the SH-SY5Y human dopaminergic neuronal cell line. We examined SH-SY5Y phenotypes using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (cell viability/proliferation), 4′,6-diamidino-2-phenylindole dihydrochloride nuclear staining, Live/Dead cell assay, cellular reactive oxygen species (ROS) assay, immunoblotting, and immunocytochemistry. Our data showed ALA attenuated hydrogen peroxide (H2O2)-induced ROS generation and cell death. ALA effectively suppressed Bax up-regulation and Bcl-2 and Bcl-xL down-regulation. Furthermore, ALA increased the expression of the antioxidant enzyme, heme oxygenase-1. Moreover, the expression of Beclin-1 and LC-3 autophagy biomarkers was decreased by ALA in our cell model. Combined, these data suggest ALA protects human dopaminergic neuronal cells against H2O2-induced cell injury by inhibiting autophagy and apoptosis.

신경세포에서의 Human Cytomegalovirus 증식과 이에 따른 세포내 유리칼슘 농도 변화 (Human Cytomegalovirus Replication and $Ca^{2+}$ Response in Human Cell Lines of Neuronal Origin)

  • 강경희;이찬희
    • 대한바이러스학회지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 1996
  • Human cytomegalovirus (HCMV) replication and $Ca^{2+}$ response in human cell lines of neuronal origin were investigated. SK-N-SH (neuroblastoma cells) and A172 cells (glioblastoma cells) were used. SK-N-SH cells were permissive for HCMV multiplication with a delay of one day compared to virus multiplication in human embryo lung (HEL) cells. The delay of HCMV multiplication in SK-N-SH cells appeared to be correlated with a delay in the $Ca^{2+}$ response. The cytoplasmic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) began to increase at 12 h p.i. in HCMV-infected SK-N-SH cells, while $[Ca^{2+}]_i$ increase in HCMV-infected HEL cells was observed as early as 3 h p.i. On the whole, the level of the increase in $[Ca^{2+}]_i$ in SK-N-SH cells was about 30% of that in HEL cells. On the other hand, in A172 cells infected with HCMV, neither production of infectious virus nor detectable increase in $[Ca^{2+}]_i$ was observed. Treatment with TPA of HCMV-infected SK-N-SH cells resulted in $[Ca^{2+}]_i$ increase at 6 h p.i. The stimulatory effect of TPA on HCMV- induced $[Ca^{2+}]_i$ increase continued until 12 h p.i., but TPA failed to stimulate the $Ca^{2+}$ response in SK-N-SH cells at 24 h p.i., suggesting that the effect of TPA had disappeared in SK-N-SH cells at that time point. In conclusion, SK-N-SH cells are permissive for HCMV replication and the delay in $Ca^{2+}$ response may be a consequence of the lower responsiveness of SK-N-SH cells than HEL cells to HCMV infection.

  • PDF