• Title/Summary/Keyword: neuronal cell protection

Search Result 69, Processing Time 0.026 seconds

Neuroprotective effects of modified Bo-Yang-Hwan-Oh-Tang in N2a neuroblastoma cells (가감보양환오탕(加減補陽還五湯)의 N2a 뇌신경세포에 대한 보호효과)

  • Lim, Kyu;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.77-84
    • /
    • 2006
  • Objectives : To evaluate the neuroprotective effects of modified Bo-Yang-Hwan-O-Tang (BHT), we investigated the neuronal death protection effects to oxidative damages in N2a neuroblastoma cells. Methods : To study the cytotoxic effect of BHT on N2a neuronal cells, the cell viability was determined by MTT assay. To investigate the neuronal death protection of BHT, N2a neuronal cells were induced oxidative damages by H2O2, and assayed the cell viability and DNA fragmentation. We also investigated DPPH free radical scavenging effects of BHT by tube test. Results : In MTT assay, $500{\mu}g/ml$ of BHT was not showed cytotoxic effect on N2a neuronal cells. BHT protected N2a neuronal cells from H2O2-induced cell death in a dose-dependent manner. BHT also protected N2a neuronal cells from H2O2-induced DNA fragmentation. BHT scavenged DPPH free radicals in a dose-dependent manner. Conclusion : These data suggest that BHT may have strong anti-oxidant effects through the free radical scavenging and neuroprotective effects in neuronal cells.

  • PDF

Protective effects of added Bo-Yang-Hwan-Oh-Tang on $H_2O_2-induced$ neurotoxicity in SH-SY5Y neuronal cells (가매보양환오탕(加昧補陽還五湯)의 SH-SY5Y 뇌신경세포에서 산화적 손상에 의한 세포사멸에 대한 보호효과)

  • Han, Hyung-Soo;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.85-92
    • /
    • 2006
  • Objectives : To evaluate the neuroprotective effects of added Bo-Yang-Hwan-Oh-Tang (BHT), we investigated the neuronal death protection effects to oxidative damages in SH-SY5Y neuronal cells. Methods : To study the cytotoxic effects of BHT on SH-SY5Y cells, the cell viability was determined by MTT assay. To investigate the neuronal death protection of BHT, SH-SY5Y cells were induced oxidative damages by $H_2O_2$ and then assayed the cell viability and DNA fragmentation. We also investigated DPPH free radical scavenging effect of BHT by tube test. Results : In MTT assay, $1000{\mu}g/ml$ of BHT was not showed the cytotoxic effect on SH-SY5Y cells. BHT protected SHSY5Y cells from $H_2O_2-induced $ neuronal cell death in a dose-dependent manner. BHT also protected SH-SY5Y cells from $H_2O_2-induced$ DNA fragmentation. BHT effectively scavenged DPPH free radicals in a dose-dependent manner. Conclusion : These data suggest that BHT may have strong antioxidant effects through the free radical scavenging and neuroprotective effects in human neuronal cells.

  • PDF

A Screen for Dual-protection Molecules from a Natural Product Library against Neuronal Cell Death and Microglial Cell Activation (신경세포 사멸과 미세아교세포활성화 억제 동시 가능 천연물질 탐색 연구)

  • Min, Ju-Sik;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.656-662
    • /
    • 2015
  • Natural products and natural product structures play a general and highly significant role in drug discovery and development process because it has various merits and potentials for new drug source that have extensive clinical experience, development time contraction, excellent stability and safety. In several neurological disorders, neuronal death and excessive activation of microglia (neuro-inflammation) are observed. A number of drug discovery-related neuronal cell death and neuro-inflammation was studied from natural products, respectively. However, until now, it has not been possible to study dual-protection molecules recorded in the Natural Product library. In the present study, using the natural product-derived library of the Institute for Korea Traditional Medical Industry, we investigated dual-protective molecules against glutamate (a classical excitatory neurotransmitter)-induced oxidative stress mediated neuronal cell death and LPS-induced excessive activated microglial cells (immune cells of the brain). Chrysophanol, extracted from Rheum palmatum, had dual-protective effects against both glutamate-induced neuronal cell death and LPS-induced NO production, triggering proinflammatory cytokines and microglia activation and resulting in neuroinflammation. Flow-cytometry analysis revealed that chrysophanol had a scavenger effect, scavenging glutamate- and LPS-induced reactive oxygen species (ROS) produced by neuronal and microglial cells, respectively. Based on the present study, chrysophanol may have an important protective role against neuronal cell death and neuroinflammation in the brain. The results may be helpful for studying drug development candidates for treating central nervous system disorders.

Neuronal Cell Protection Activity of Macrolactin A Produced by Actinomadura sp.

  • Kim, Hyeon-Ho;Kim, Won-Gon;Ryoo, In-Ja;Kim, Chang-Jin;Suk, Jae-Eun;Han, Kyou-Hoon;Hwang, Se-Young;Yoo, Ick-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.429-434
    • /
    • 1997
  • Macrolactin A, 24-membered macrolide, was isolated from the culture broth of Actinomadura sp. as a neuronal cell protecting substance. In the cell assay, this compound inhibited glutamate toxicity in N18-RE-105 cells with an $EC_50$ value of 0.5 ${\mu}g/ml.

  • PDF

Role of Cannabinoid on Neuronal Differentiation of P19 Cells

  • Ju, Hyun-Hee;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.17 no.3
    • /
    • pp.267-271
    • /
    • 2011
  • P19 cells are pluripotent embryonal carcinoma cells and can be differentiated into neuronal cell type by treatment with retinoic acid (RA) and aggregation culture. Cannabinoids are the active components of Cannabis sativa and they have diverse pharmacologic activities, such as pain control, anti-inflammatory effects, neuro-protection effects and tumor regression. Cannabinoids also involved in neuronal proliferation, migration, differentiation and survival in developing brain. Here, we studied the role of cannabinoids on neuronal differentiation of P19 cells. Treatment with cannabinoids increased the neuronal differentiation induced by RA and also promoted transcriptional activity of neurogenin 1, key transcription factor for neuronal differentiation of P19 cells. These results suggest that the cannabinoids can accelerate neuronal differentiation of P19 cells.

Protective Effect of Extracts from Euryale ferox against Glutamate-induced Cytotoxicity in Neuronal Cells

  • Lee, Mi-Ra;Kim, Ji-Hyun;Son, Eun-Soon;Park, Hae-Ryong
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.162-166
    • /
    • 2009
  • Oxczaasssaidative stress plays an important role in neuronal cell death, which is associated with neurodegenerative conditions such as Alzheimer's and Parkinson's disease. This study evaluated the neuroprotective effect of Euryale ferox (EF) extracts against glutamate-induced cytotoxicity in hybridoma N18-RE-105 cells. Specifically, neuroprotective effects of methanol and ethanol extracts were evaluated by the MTT reduction assay. The ethanol extracts of EF displayed dose dependent protection against neuronal cell death induced by 20 mM of glutamate. Furthermore, the ethanol extracts of EF was sequentially fractionated with hexane, diethyl ether, ethyl acetate, and water layer according to degree of polarity. The hexane fractions exhibited neuroprotective effect against glutamate-stressed N18-RE-105 cells. Overall, results suggest that EF extracts can potentially be used as chemotherapeutic agents against neuronal diseases.

Antioxidant and Neuronal Cell Protective Effects of Aqueous Extracts from Lotus Leaf Tea

  • Jeong, Chang-Ho;Jeong, Hee-Rok;Choi, Sung-Gil;Heo, Ho Jin
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.115-127
    • /
    • 2012
  • Antioxidant and neuronal cell protective effects of aqueous extract from lotus (Nelumbo nucifera) leaf tea (LLTE) were investigated. The 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) radical scavenging effect, ferric reducing antioxidant power, and malondialdehyde inhibition of LLTE were increased in a dose dependent manner. Intracellular reactive oxygen species accumulation resulting from hydrogen peroxide ($H_2O_2$) treatment was significantly reduced when LLTE were present in the media compared to PC12 cells treated with $H_2O_2$ only. In neuronal cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), LLTE showed protective effect against $H_2O_2$-induced neurotoxicity. In addition, lactate dehydrogenase release into medium was also inhibited by LLTE (7.13-43.89%). Total phenolics of LLTE were 33.16 mg/g and a quercetin was identified as major phenolics (105.93 mg/100g). Therefore, above these data suggest that LLTE including quercetin may be useful in the natural antioxidant substance, and may reduce the risk of neurodegenerative disease.

Spinacia oleracea Extract Protects against Chemical-Induced Neuronal Cell Death (시금치 추출물에 의한 뇌세포 사멸 보호 효과)

  • Park, Ja-Young;Heo, Jin-Chul;Woo, Sang-Uk;Shin, Heung-Mook;Kwon, Taeg-Kyu;Lee, Jin-Man;Chung, Shin-Kyo;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.425-430
    • /
    • 2007
  • To investigate the potential therapeutic value of a plant extract against amyloid ${\beta}-peptide-induced$ cell damage, we first screened extracts of 250 herbs, and finally selected a water extract of Spinacia oleracea for further study. This extractshowed the potential to inhibit the reactions of oxidants. We measured the angiotensin-converting-enzyme (ACE) inhibitory activity of the extract, and assessed the ability of the extract to protect neuronal cells from chemical-induced cell death. SH-SY5Y neuroblastoma cells were used in this assay. The extract exerted protective effects on $H_2O_2-induced$ cell death, when $H_2O_2$ was used at 100 M, 200 M, and 500 M (protection of 87%, 73%, and 58%, respectively). When 50 M of amyloid ${\beta}-peptide$ was added to the test cells, however, the extract had no protective effect on cell death. The extract inhibited ACE activity in a dose-dependent manner, and exhibited potent protection against the deleterious effects of $H_2O_2$. In sum, these results suggest that a water extract of Spinacia oleracea has the potential to afford protection against chemical-induced neuronal cell death, and the extract may be useful in the treatment of neurodegenerative diseases. The precise molecular mechanism of neuroprotection is under investigation.

Protective Effect of Acanthopanax senticosus on Oxidative Stress Induced PC12 Cell Death

  • Choi, Soo-Jung;Yoon, Kyung-Young;Choi, Sung-Gil;Kim, Dae-Ok;Oh, Se-Jong;Jun, Woo-Jin;Shin, Dong-Hoon;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1035-1040
    • /
    • 2007
  • Epidemiologic studies have shown important relationships between oxidative stress and Alzheimer's disease (AD) brain. In this study, free radical scavenging activity and neuronal cell protection effect of aqueous methanol extracts of Acanthopanax senticosus (A. senticosus) were examined. $H_2O_2$-induced oxidative stress was measured using 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. Pretreatment with the phenolics of A. senticosus prevented oxidative injury against $H_2O_2$ toxicity. Since oxidative stress is known to increase neuronal cell membrane breakdown, leading to cell death, lactic dehydrogenase release, and trypan blue exclusion assays were utilized. We found that phenolics of A. senticosus have neuronal cell protection effects. It suggests that the phenolics of A. senticosus inhibited $H_2O_2$-induced oxidative stress and A. senticosus may be beneficial against the oxidative stress-induced risk in AD.

Effects of MK-801, CNQX, Cycloheximide and BAPTA-AM on Anoxic Injury of Hippocampal Organotypic Slice Culture (해마 조직 절편 배양을 이용한 무산소 손상에 대한 MK-801, CNQX, Cycloheximide 및 BAPTA-AM의 효과)

  • Moon, Soo-Hyeon;Kwon, Taek-Hyon;Park, Youn-Kwan;Chung, Heung-Seob;Suh, Jung Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1008-1018
    • /
    • 2000
  • Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.

  • PDF