• Title/Summary/Keyword: neuronal cell damage

Search Result 222, Processing Time 0.026 seconds

Preventive Characteristics of Garlic Extracts Using in vitro Model System on Alzheimer's Disease (In vitro model system을 활용한 마늘 추출물의 치매예방 특성)

  • Choi, Gwi-Nam;Kim, Ji-Hye;Kwak, Ji-Hyun;Jeong, Chang-Ho;Jeong, Hee-Rok;Shin, Jung-Hye;Kang, Min-Jung;Sung, Nak-Ju;Heo, Ho-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.4
    • /
    • pp.45-55
    • /
    • 2010
  • In this study, the acetylcholinesterase (AChE) inhibition and neuronal cell protective effects of water, 100% methanol and dichlromethane extracts from garlic were investigated. We found that dichloromethane extract of garlic resulted in a dose-dependent manner on AChE inhibition ($IC_{50}$: $36.1{\mu}g/mL$). In cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), cell viabilities of water, 100% methanol and dichlromethane extracts were lower (almost under 40%) than amyloid ${\beta}$ protein ($A{\beta}$)-induced neurotoxicity. Because $A{\beta}$ is also known to increase neuronal cell membrane breakdown, neuronal apoptosis was further confirmed by lactate dehydrogenase (LDH) and neutral red uptake (NRU) assay. Water extract presented relative protection against $A{\beta}$-induced membrane damage in LDH assay. However all garlic extracts showed significant problem with decrease of cell viability in NRU assay, especially at dichloromethan extract. To determine active compounds in column fractions (98:2 fraction) from dichloromethane extract which showed significant AChE inhibitory effect, we performed HPLC and LC-MS analysis. It was supposed that garlic may contain allyl methyl disulfide, diallyl monosulfide, and diallyl disulfide as active compounds.

The Effects of Woohwangcheongsim-won on Reperfusion Following Middle Cerebral Artery Occlusion in Rats (우황청심원이 중대뇌동맥 결찰로 유발된 뇌허혈에 미치는 영향)

  • 조규선;정승현;신길조;이원철
    • The Journal of Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.78-89
    • /
    • 2001
  • Objectives : The purpose of this investigation is to evaluate the effects of Woohwangcheongsim-won on reperfusion following MCA occlusion in rats. Methods : To evaluate the effect of Woohwangcheongsim-won on reperfusion following MCA occlusion, the volume of cerebral ischemia and edema were measured and the change of the CAI pyramidal neuron in the hippocampus was investigated by light microscopy. And the changes of several neurotransmitters and enzymes were investigated with the immunohistochemical methods. Results : 1. The volume of the control group, which was ischemic-damaged was 23.6%, and that of the sample group was 13.5%. 2. The voluminalratio of the right/left hemisphere was 116 in the control group, and that of the sample group was 107. 3. The pyramidal cells of CAI area in the control group were greatly damaged. The cells were changed into discontinuous and unsystematic forms, and nuclei, and cytoplasms were shrunk. On the other hand, the cells of the sample group were less damaged. 4. On the immunohistochemical methods, the sensitivities of GABA, NOS, DBH in the control group were increased, and those of synapsin and $eEF-l{\alpha}$ were decreased as compared with the normal group. NOS and DBH which were negative in the normal group showed positive reaction. On the other hand, the sensitivities of GABA, NOS and DBH in the sample group were decreased, but those of NPY, synapsin, CaMKII and $eEF-l{\alpha}$ were increased as compared with the control group. Conclusions : Woohwangcheongsim-won reduced the volume of cerebral ischemia and edema, and minimized the damage of pyramidal cells. The mechanism was related to protein synthesis, such as synapsin, ${\alpha}CaMKII$ and $eEF-l{\alpha}$, which resist neurotoxicity of glutamate receptors.

  • PDF

Mechanisms of Cadmium Carcinogenicity in the Gastrointestinal Tract

  • Bishak, Yaser Khaje;Payahoo, Laleh;Osatdrahimi, Alireza;Nourazarian, Alireza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.9-21
    • /
    • 2015
  • Cancer, a serious public health problem in worldwide, results from an excessive and uncontrolled proliferation of the body cells without obvious physiological demands of organs. The gastrointestinal tract, including the esophagus, stomach and intestine, is a unique organ system. It has the highest cancer incidence and cancer-related mortality in the body and is influenceed by both genetic and environmental factors. Among the various chemical elements recognized in the nature, some of them including zinc, iron, cobalt, and copper have essential roles in the various biochemical and physiological processes, but only at low levels and others such as cadmium, lead, mercury, arsenic, and nickel are considered as threats for human health especially with chronic exposure at high levels. Cadmium, an environment contaminant, cannot be destroyed in nature. Through impairment of vitamin D metabolism in the kidney it causes nephrotoxicity and subsequently bone metabolism impairment and fragility. The major mechanisms involved in cadmium carcinogenesis could be related to the suppression of gene expression, inhibition of DNA damage repair, inhibition of apoptosis, and induction of oxidative stress. In addition, cadmium may act through aberrant DNA methylation. Cadmium affects multiple cellular processes, including signal transduction pathways, cell proliferation, differentiation, and apoptosis. Down-regulation of methyltransferases enzymes and reduction of DNA methylation have been stated as epigenetic effects of cadmium. Furthermore, increasing intracellular free calcium ion levels induces neuronal apoptosis in addition to other deleterious influence on the stability of the genome.

Inhibition of Apoptosis by Elaeocarpus sylvestris in Mice Following Whole-body Exposure to Ionizing Radiation: Implications for Radioprotectors

  • Park, Eun-Jin;Lee, Nam-Ho;Ahn, Gin-Nae;Baik, Jong-Seok;Lee, Je-Hee;Hwang, Kyu-Kye;Park, Jae-Woo;Jee, Young-Heun
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.718-722
    • /
    • 2008
  • Elaeocarpus sylvestris var. ellipticus (E.S.), which contains 1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose (PGG), is reported to have the ability to scavenge oxygen radicals, thereby protecting rat neuronal cells from oxidative damage. The potential of an E.S. extract, which contains a rich PGG, to protect radiosensitive lymphocytes and intestinal crypt cells from radiation injury induced by a single whole-body irradiation (WBI) in vivo was investigated. Our results demonstrated that in immune cells, E.S. treatment decreased the percent of tail DNA, a parameter of DNA damage, compared with levels in untreated, irradiated controls. Furthermore, apoptosis was significantly decreased in lymphocytes and intestinal crypt cells of E.S.-treated mice compared with irradiated controls. These results suggest that the E.S. extract can strengthen the radioresistance of radiosensitive lymphocytes and crypt cells by preventing apoptosis. Therefore, it was concluded that E.S. extract has the radioprotective effects in vivo through an inhibition of apoptosis.

α-Pinene Attenuates Methamphetamine-Induced Conditioned Place Preference in C57BL/6 Mice

  • Chan Lee;Jung-Hee Jang;Gyu Hwan Park
    • Biomolecules & Therapeutics
    • /
    • v.31 no.4
    • /
    • pp.411-416
    • /
    • 2023
  • Methamphetamine (METH) is a powerful neurotoxic psychostimulant affecting dopamine transporter (DAT) activity and leading to continuous excess extracellular dopamine levels. Despite recent advances in the knowledge on neurobiological mechanisms underlying METH abuse, there are few effective pharmacotherapies to prevent METH abuse leading to brain damage and neuropsychiatric deficits. α-Pinene (APN) is one of the major monoterpenes derived from pine essential oils and has diverse biological properties including anti-nociceptive, anti-anxiolytic, antioxidant, and anti-inflammatory actions. In the present study, we investigated the therapeutic potential of APN in a METH abuse mice model. METH (1 mg/kg/day, i.p.) was injected into C57BL/6 mice for four alternative days, and a conditioned place preference (CPP) test was performed. The METH-administered group exhibited increased sensitivity to place preference and significantly decreased levels of dopamine-related markers such as dopamine 2 receptor (D2R) and tyrosine hydroxylase in the striatum of the mice. Moreover, METH caused apoptotic cell death by induction of inflammation and oxidative stress. Conversely, APN treatment (3 and 10 mg/kg, i.p.) significantly reduced METH-mediated place preference and restored the levels of D2R and tyrosine hydroxylase in the striatum. APN increased the anti-apoptotic Bcl-2 to pro-apoptotic Bax ratio and decreased the expression of inflammatory protein Iba-1. METH-induced lipid peroxidation was effectively mitigated by APN by up-regulation of antioxidant enzymes such as manganese-superoxide dismutase and glutamylcysteine synthase via activation of nuclear factor-erythroid 2-related factor 2. These results suggest that APN may have protective potential and be considered as a promising therapeutic agent for METH-induced drug addiction and neuronal damage.

Characteristics of Fermented Dropwort Extract and Vinegar Using Fermented Dropwort Extract and Its Protective Effects on Oxidative Damage in Rat Glioma C6 Cells (미나리 발효액과 미나리 발효액을 이용한 식초의 특성 분석 및 glioma C6 세포에서 산화적 손상에 대한 보호 효과)

  • Kim, Min-Ju;Lee, Sam-Pin;Choi, Jun-Hyeok;Kwon, Seung-Hyuk;Kim, Hyung-Dae;Bang, Myun-Ho;Yang, Seun-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.350-355
    • /
    • 2013
  • The quality of fermented dropwort extract (FDE) and fermented dropwort vinegar (FDV) was assessed for free sugar, organic acid and free and total amino acid content. Major organic acids were lactic acid in FDE and acetic acid in FDV. Free sugars in FDE were fructose and glucose, and those in FDV were fructose, sucrose, and maltose. Aspartic acid was the major free amino acid in both FDE and FDV. Additionally, the main free amino acids in FDE were alanine and ${\gamma}$-amino-n-butyric acid (GABA), while those in FDV were arginine and valine. Moreover, to investigate the protective effects of FDE and FDV against oxidative stress induced by t-BHP and $H_2O_2$, C6 cells were treated with FDE or FDV prior to inducing the oxidative damage. FDE and FDV inhibited cell death significantly in a dose-dependent manner. These data imply that FDE and FDV may be effective in neuronal cell protection against oxidative damage.

Neuroprotective effects of phenolic compounds isolated from Spiraea prunifolia var. simpliciflora (조팝나무(Spiraea prunifolia var. simpliciflora)로부터 분리한 페놀 화합물의 신경세포 보호효과)

  • Oh, Seon Min;Choi, Doo Jin;Kim, Hyoung-Geun;Lee, Jae Won;Lee, Young-Seob;Lee, Jeong-Hoon;Lee, Seung-Eun;Kim, Geum-Soog;Baek, Nam-In;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.397-403
    • /
    • 2018
  • The leaves of Spiraea prunifolia were extracted with 80% aqueous MeOH and the concentrates were partitioned into EtOAc, n-BuOH, and $H_2O$ fractions. The repeated $SiO_2$ or ODS column, and medium pressure liquid chromatographies for the n-BuOH fraction led to isolation of two phenolic glucosides. The chemical structures of these compounds were determined as isosalicin (1) and crenatin (2) based on spectroscopic analyses including Nuclear magnetic resonance and MS. Extracts were analyzed using UPLC-MS/MS providing a short analysis time within 5 min using MRM technique. The concentration of crenatin was higher as 9.53 mg/g and isosalicin was lower as 0.65 mg/g. Neuroprotective effects of these compounds against hydrogen peroxide ($H_2O_2$)-induced neurotoxicity were evaluated. The results showed that exposure to $H_2O_2$ induced morphological changes, cell death and neurotoxicity in SK-N-MC cells. However, pretreatment with crenatin resulted in inhibition of morphological change, reduction of loss of cell viability and attenuation of neuronal damage. These results suggested that neuroprotective effect of crenatin isolated from S. prunifolia can be a good candidate for the development of health beneficial foods which can ameliorate the degenerative neuronal disease caused by oxidative stress.

Protective Effects of Chungsimyeonja-eum on Glutamate-induced Apoptosis in C6 Glial Cells (Glutamate로 유도된 C6 glial 세포 자멸사에 대한 청심연자음(淸心蓮子飮)의 보호효과)

  • Ko, Seok-Jae;Shin, Yong-Jeen;Jang, Won-Seok;Ha, Ye-Jin;Lee, Seon-A;Ahn, Min-Seob;Kwon, Oh-Sang;Shin, Sun-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.54-65
    • /
    • 2010
  • Objective : The water extract of Chungsimyeonja-eum (CSYJE) has traditionally been used in treatments of heart diseases and brain diseases in Oriental medicine. However, little is known about the mechanism by which CSYJE protects neuronal cells from injury damages. Therefore, in this study we attempted to elucidate the mechanism of the cytoprotective effect of the CSYJE extract on glutamate-induced C6 glial cell death. Methods : Cultured cells were pretreated with CSYJE and exposed to glutamate, cell damage was assessed by using MTT assay and propidium iodide (PI), probe 2',7'-dichlorofluorescein diacetate (DCF-DA) staining. Western blotting was performed using anti-procaspase-3 and anti-PARP, respectively. Result : We determined the elevated cell viability by CSYJE extract on glutamate-induced C6 glial cell death. Glutamate induced DNA fragmentation on C6 glial cells but pre-treatment with CSYJE inhibited DNA fragmentation. One of the main mediators of glutamate-induced cytotoxicity was known to generation of reactive oxygen species (ROS). Pre-treatment with CSYJE inhibited this ROS generation from glutamate-stimulated C6 glial cells. Also, we identified that the ROS-induced DCF-DA green fluorescence was reduced by CSYJE pre-treatment. The critical markers of apoptotic cell death are the cleavages of procaspase-3 protease and PARP proteins, so we checked the expression level and cleavages of procaspase-3 protease and PARP proteins. Glutamate-treated C6 glial cells showed the cleavages of procaspase-3 protease and PARP proteins and followed the reduction of expression of these proteins. Conclusion : These findings indicate that CSYJE may prevent cell death from glutamate-induced C6 glial cell death by inhibiting the ROS generation and procaspase-3 and PARP expression.

Studies on the Anti-inflammatory and Anti-apoptotic Effect of Catalposide Isolated from Catalpa ovata (개오동나무에서 추출(抽出)한 Catalposide의 항염(抗炎) 및 세포고사(細胞枯死) 억제효과(抑制效果)에 관(關)한 연구(硏究))

  • Oh, Cheon-Sik;Hwang, Sang-Wook;Kim, Yong-Woo;Song, Dal-Soo;Chae, Young-Seok;Jeong, Jong-Gil;Song, Ho-Joon;Shin, Min-Kyo
    • The Korea Journal of Herbology
    • /
    • v.20 no.3
    • /
    • pp.29-41
    • /
    • 2005
  • Objectives : The use of natural products with therapeutic properties is as ancient as human civilisation and, for a long time, mineral, plant and animal products were the main sources of drugs. Catalposide, the major iridoid glycoside isolated from the stem bark of Catalpa ovata G. Don (Bignoniceae) has been shown to possess anti-microbial and anti-tumoral properties. Heme oxygenase-1 (HO-1) is a stress response protein and is known to play a protective role against the oxidative injury. In this study, we examined whether catalposide could protect Neuro 2A cells, a kind of neuronal cell lines, from oxidative damage through the induction of HO-1 protein expression and HO activity. We also examined the effects of catalposide on the productions of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and nitric oxide (NO) on RAW 264.7 macrophages activated with the endotoxin lipopolysaccharide. Methods : HO-1 expression in Neuro 2A cells was measured by Western blotting analysis. NO and $TNF--{\alpha}$ produced by RAW 264.7 macrophage were measured by Griess reagent and enzyme-linked immunosorbent assay, respectively. Results : The treatment of the cells with catalposide resulted in dose- and time-dependent up-regulations of both HO-1 protein expression and HO activity. Catalposide protected the cells from hydrogen peroxide-induced cell death. The protective effect of catalposide on hydrogen peroxide-induced cell death was abrogated by zinc protoporphyrin IX, a HO inhibitor. Additional experiments revealed the involvement of CO in the cytoprotective effect of catalposide-induced HO-1. In addition, catalposide inhibited the productions of $TNF--{\alpha}$ and NO with significant decreases in mRNA levels of $TNF--{\alpha}$ and inducible NO synthase. Conclusions : Our results indicate that catalposide is a potent inducer of HO-1 and HO-1 induction is responsible for the catalposide-mediated cytoprotection against oxidative damage and that catalposide may have therapeutic potential in the control of inflammatory disorders.

  • PDF

Neuroprotective effect of Deodeok (Codonopsis lanceolata) bud extracts in H2O2-stimulated SH-SY5Y cells (더덕순 에탄올 추출물의 신경세포 보호 효과)

  • Hee Sun Yang;In Guk Hwang;Ae-jin Choi;Jeong-sook Choe
    • Journal of Nutrition and Health
    • /
    • v.56 no.2
    • /
    • pp.140-154
    • /
    • 2023
  • Purpose: Deodeok (Codonopsis lanceolata) is generally used in conventional medicines and is considered to have remedial properties to cure several diseases. However, application of the C. lanceolata bud as a novel food ingredient has not been fully explored. Hydrogen peroxide (H2O2) is associated with the production of oxidative damage that results in mutagenesis, carcinogenesis, and cell death. This study examines the neuroprotective effect of C. lanceolate bud extracts (CLBE) on H2O2-stimulated apoptosis in SH-SY5Y cells. Methods: C. lanceolata bud of length 10 to 15 cm was collected and extracted using 70% ethanol. Cytotoxicity was evaluated by the EZ-cytox reagent, measurement of lactic dehydrogenase (LDH) release and reactive oxygen species (ROS). The morphological changes of the nuclei were determined using the Hoechst 33258 dye. Enzyme activities were analyzed using the caspase activity assay kit. Related protein expressions were quantified by the Western blot immunoassay in H2O2-stimulated SH-SY5Y cells. Results: Cell viability, LDH release and ROS generation, demonstrated neuroprotective effects of CLBE in H2O2-stimulated SH-SY5Y cells. The occurrence of apoptosis in H2O2-stimulated cells was confirmed by caspase activity, which was increased in H2O2-stimulated SH-SY5Y cells compared to the unexposed group. Pretreatment of CLBE was observed to inhibit the H2O2-stimulated apoptosis. In addition, exposure to CLBE resulted in increased expression of the Bcl-2 (B cell lymphoma 2) protein and decreased expression of the Bax (Bcl2 associated X) protein. Conclusion: This study shows that exposure to CLBE alleviates the H2O2-stimulated neuronal damage in SH-SY5Y cells. Our results indicate the potential application of CLBE in neurodegenerative disease therapy or prevention.