• 제목/요약/키워드: neuron, cell differentiation

검색결과 64건 처리시간 0.021초

A Missense Variant (R239Q) in CCN3 Induces Aberrant Apoptosis in the Developing Mouse Brain

  • Kim, Hyunduk;Yang, Hayoung;Woo, Dong Kyun;Jang, Sung-Wuk;Shim, Sungbo
    • Biomedical Science Letters
    • /
    • 제24권2호
    • /
    • pp.64-75
    • /
    • 2018
  • CCN3 (also known as NOV, Nephroblastoma overexpressed) proteins are involved in various pathologies during different developmental stages. We have previously shown that intracellular levels and normal extracellular secretion of CCN3 are important for neuronal differentiation. Furthermore, we demonstrated that a single amino acid in the CCN3 TSP-1 domain is important for extracellular secretion and that palmitoylation of CCN3 is required in this process. However, the effect of abnormal CCN3 accumulation on cells remains to be studied. Here, we found mutations in the TSP-1 domain of CCN3 that led to intracellular accumulation and abnormal aggregation of CCN3. It was observed that this mutation resulted in a phenomenon similar to neurodegeneration when overexpressed in the developing mouse cortex. This mutation also confirmed the activation of apoptotic gene expression in Neuro2a cells. In addition, we confirmed the in vivo transcriptional changes induced by this mutation using microarray analysis. We observed a significant increase in the expression of Anp32a, an apoptosis-related gene. Collectively, these results indicate that a single mutation in CCN3 can lead to abnormal cell death if it shows intracellular accumulation and abnormal aggregation.

NgR1 Expressed in P19 Embryonal Carcinoma Cells Differentiated by Retinoic Acid Can Activate STAT3

  • Lee, Su In;Yun, Jieun;Baek, Ji-Young;Jeong, Yun-Ji;Kim, Jin-Ah;Kang, Jong Soon;Park, Sun Hong;Kim, Sang Kyum;Park, Song-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.105-109
    • /
    • 2015
  • NgR1, a Nogo receptor, is involved in inhibition of neurite outgrowth and axonal regeneration and regulation of synaptic plasticity. P19 embryonal carcinoma cells were induced to differentiate into neuron-like cells using all trans-retinoic acid and the presence and/or function of cellular molecules, such as NgR1, NMDA receptors and STAT3, were examined. Neuronally differentiated P19 cells expressed the mRNA and protein of NgR1, which could stimulate the phosphorylation of STAT3 when activated by Nogo-P4 peptide, an active segment of Nogo-66. During the whole period of differentiation, mRNAs of all of the NMDA receptor subtypes tested (NR1, NR2A-2D) were consistently expressed, which meant that neuronally differentiated P19 cells maintained some characteristics of neurons, especially central nervous system neurons. Our results suggests that neuronally differentiated P19 cells expressing NgR1 may be an efficient and convenient in vitro model for studying the molecular mechanism of cellular events that involve NgR1 and its binding partners, and for screening compounds that activate or inhibit NgR1.

Kir4.1 is coexpressed with stemness markers in activated astrocytes in the injured brain and a Kir4.1 inhibitor BaCl2 negatively regulates neurosphere formation in culture

  • Kwon, Jae-Kyung;Choi, Dong-Joo;Yang, Haijie;Ko, Dong Wan;Jou, Ilo;Park, Sang Myun;Joe, Eun-Hye
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권6호
    • /
    • pp.565-574
    • /
    • 2021
  • Astrocytes are activated in response to brain damage. Here, we found that expression of Kir4.1, a major potassium channel in astrocytes, is increased in activated astrocytes in the injured brain together with upregulation of the neural stem cell markers, Sox2 and Nestin. Expression of Kir4.1 was also increased together with that of Nestin and Sox2 in neurospheres formed from dissociated P7 mouse brains. Using the Kir4.1 blocker BaCl2 to determine whether Kir4.1 is involved in acquisition of stemness, we found that inhibition of Kir4.1 activity caused a concentration-dependent increase in sphere size and Sox2 levels, but had little effect on Nestin levels. Moreover, induction of differentiation of cultured neural stem cells by withdrawing epidermal growth factor and fibroblast growth factor from the culture medium caused a sharp initial increase in Kir4.1 expression followed by a decrease, whereas Sox2 and Nestin levels continuously decreased. Inhibition of Kir4.1 had no effect on expression levels of Sox2 or Nestin, or the astrocyte and neuron markers glial fibrillary acidic protein and β-tubulin III, respectively. Taken together, these results indicate that Kir4.1 may control gain of stemness but not differentiation of stem cells.

Synergistic Increase of BDNF Release from Rat Primary Cortical Neuron by Combination of Several Medicinal Plant-Derived Compounds

  • Jeon, Se-Jin;Bak, Hae-Rang;Seo, Jung-Eun;Kwon, Kyung-Ja;Kang, Young-Sun;Kim, Hee-Jin;Cheong, Jae-Hoon;Ryu, Jong-Hoon;Ko, Kwang-Ho;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.39-47
    • /
    • 2010
  • Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor involved in neuronal differentiation, plasticity, survival and regeneration. BDNF draws massive attention mainly due to the potential as a therapeutic target in neurological diseases such as depression and Alzheimer's disease. In a primary screening for the natural compounds enhancing BDNF release from cultured rat primary cortical neuron, we found that compounds such as baicalein, tanshinone IIa, cinnamic acid, epiberberine, genistein and wogonin among many others increased BDNF release. All the compounds at $0.1{\mu}M$ of concentration barely showed stimulatory effect on BDNF induction, however, their combination (mixture 1; baicalein, tanshinone IIa and cinnamic acid, mixture 2; epiberberine, genistein and wogonin) showed synergistic increase in BDNF release as well as mRNA and protein expression. The level of BDNF expression was comparable to the maximum BDNF stimulation attainable by a positive control oroxylin A ($20{\mu}M$) without cell toxicity as determined by MTT analysis. Both mixtures synergistically increased the phosphorylation of extracellular signal-regulated kinase (ERK) as well as cAMP response element binding protein (CREB), an immediate and essential regulator of BDNF expression. Similar to these results, mixture of these compounds synergistically inhibited the up-regulation of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide treatments in rat primary astrocytes. These results suggest that the combinatorial treatment of natural compounds in lower concentration might be a useful strategy to obtain sufficient BDNF stimulation in neurological disease condition such as depression, while minimizing potential side effects and toxicity of higher concentration of a single compound.

Interaction between the p75 neurotrophin receptor and a novel adaptor protein

  • Lee, Yun-Hee;Yu, Ji-Hee;Cho, Jung-Sun;Park, Han-Jeong;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • 제33권2호
    • /
    • pp.71-76
    • /
    • 2008
  • The neurotrophin plays an important role in the development, differentiation and survival of the nervous system in vertebrates. It exerts its cellular effects through two different receptors, the Trk receptor tyrosine kinase neurotrophin receptor and the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily. Trk and p75 neurotrophin receptors utilize specific target proteins to transmit signals into the cell. An ankyrin-rich membrane spanning protein (ARMS) was identified as a new p75 interacting protein and serves as a novel downstream target of p75 neurotrophin receptor. We sought to delineate the interaction between p75 and ARMS by deletion constructs of p75 and green fluorescent protein (GFP)-tagged ARMS. We examined the interaction between these two proteins after overexpressing them in HEK-293 cells. Using both Western blot analysis and immunocytochemistry followed by confocal laser scanning microscopy, we found out that the intracellular domain of the p75 neurotrophin receptor was important for the interaction with ARMS. The results from this study suggest that ARMS may play an important role for mediating the signals from p75 neurotrophin receptor into the cell.

Recent Advancement in the Stem Cell Biology (Stem Cell Biology, 최근의 진보)

  • Harn, Chang-Yawl
    • Journal of Plant Biotechnology
    • /
    • 제33권3호
    • /
    • pp.195-207
    • /
    • 2006
  • Stem cells are the primordial, initial cells which usually divide asymmetrically giving rise to on the one hand self-renewals and on the other hand progenitor cells with potential for differentiation. Zygote (fertilized egg), with totipotency, deserves the top-ranking stem cell - he totipotent stem cell (TSC). Both the ICM (inner cell mass) taken from the 6 days-old human blastocyst and ESC (embryonic stem cell) derived from the in vitro cultured ICM have slightly less potency for differentiation than the zygote, and are termed pluripotent stem cells. Stem cells in the tissues and organs of fetus, infant, and adult have highly reduced potency and committed to produce only progenitor cells for particular tissues. These tissue-specific stem cells are called multipotent stem cells. These tissue-specific/committed multipotent stem cells, when placed in altered environment other than their original niche, can yield cells characteristic of the altered environment. These findings are certainly of potential interest from the clinical, therapeutic perspective. The controversial terminology 'somatic stem cell plasticity' coined by the stem cell community seems to have been proved true. Followings are some of the recent knowledges related to the stem cell. Just as the tissues of our body have their own multipotent stem cells, cancerous tumor has undifferentiated cells known as cancer stem cell (CSC). Each time CSC cleaves, it makes two daughter cells with different fate. One is endowed with immortality, the remarkable ability to divide indefinitely, while the other progeny cell divides occasionally but lives forever. In the cancer tumor, CSC is minority being as few as 3-5% of the tumor mass but it is the culprit behind the tumor-malignancy, metastasis, and recurrence of cancer. CSC is like a master print. As long as the original exists, copies can be made and the disease can persist. If the CSC is destroyed, cancer tumor can't grow. In the decades-long cancer therapy, efforts were focused on the reducing of the bulk of cancerous growth. How cancer therapy is changing to destroy the origin of tumor, the CSC. The next generation of treatments should be to recognize and target the root cause of cancerous growth, the CSC, rather than the reducing of the bulk of tumor, Now the strategy is to find a way to identify and isolate the stem cells. The surfaces of normal as well as the cancer stem cells are studded with proteins. In leukaemia stem cell, for example, protein CD 34 is identified. In the new treatment of cancer disease it is needed to look for protein unique to the CSC. Blocking the stem cell's source of nutrients might be another effective strategy. The mystery of sternness of stem cells has begun to be deciphered. ESC can replicate indefinitely and yet retains the potential to turn into any kind of differentiated cells. Polycomb group protein such as Suz 12 repress most of the regulatory genes which, activated, are turned to be developmental genes. These protein molecules keep the ESC in an undifferentiated state. Many of the regulator genes silenced by polycomb proteins are also occupied by such ESC transcription factors as Oct 4, Sox 2, and Nanog. Both polycomb and transcription factor proteins seem to cooperate to keep the ESC in an undifferentiated state, pluripotent, and self-renewable. A normal prion protein (PrP) is found throughout the body from blood to the brain. Prion diseases such as mad cow disease (bovine spongiform encephalopathy) are caused when a normal prion protein misfolds to give rise to PrP$^{SC}$ and assault brain tissue. Why has human body kept such a deadly and enigmatic protein? Although our body has preserved the prion protein, prion diseases are of rare occurrence. Deadly prion diseases have been intensively studied, but normal prion problems are not. Very few facts on the benefit of prion proteins have been known so far. It was found that PrP was hugely expressed on the stem cell surface of bone marrow and on the cells of neural progenitor, PrP seems to have some function in cell maturation and facilitate the division of stem cells and their self-renewal. PrP also might help guide the decision of neural progenitor cell to become a neuron.

Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells (중간엽줄기세포의 노화에 따른 후생유전학적 변화)

  • Oh, Youn Seo;Cho, Goang-Won
    • Journal of Life Science
    • /
    • 제25권6호
    • /
    • pp.724-731
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) are characterized by their multipotency capacity, which allows them to differentiate into diverse cell types (bone, cartilage, fat, tendon, and neuron-like cells) and secrete a variety of trophic factors (ANG, FGF-2, HGF, IGF-1, PIGF, SDF-1α, TGF-β, and VEGF). MSCs can be easily isolated from human bone-marrow, fat, and umbilical-cord tissues. These features indicate that MSCs might be of use in stem-cell therapy. However, MSCs undergo cellular senescence during long-term expansion, and this is accompanied by functional declines in stem-cell potency. In the human body, because of their senescence and declines in their microenvironmental niches stem cells fail to maintain tissue homeostasis, and as a result, senescent cells accumulate in tissues. This can lead to age-related diseases, including degenerative disorders and cancers. Recent studies suggest that the number of histone modifications to stem cells’ genomes and aberrant alterations to their DNA methylation increase as stem cells progress into senescence. These epigenetic alterations have been partly reversed with treatments in which DNA methyltransferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors are introduced into replicative senescent-MSCs. This review focuses on epigenetic alteration in replicative senescent-MSCs and explains how epigenetic modifications are widely associated with stem-cell senescences such as differentiation, proliferation, migration, calcium signaling, and apoptosis.

Neuronal Phenotypes and Gene Expression Profiles of the Human Adipose Tissue-Derived Stromal Cells in the Neuronal Induction (신경 분화 유도한 인체 지방조직 유래 간질세포의 신경 표현형과 유전자 발현)

  • Shim, Su Kyung;Oh, Deuk Young;Jun, Young Joon;Lee, Paik Kwon;Ahn, Sang Tae;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • 제34권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Purpose: Human adipose tissue-derived stromal cells(hADSCs) can be expanded in vitro and induced to differentiate into multiple mesenchymal cell types. In this study we have examined various neuronal phenotypes and gene expression profiles of the hADSCs in the neuronal induction. Methods: The hADSCs were isolated from human adipose tissue and they were characterized by the flow cytometry analysis using CD13, CD29, CD34, CD45, CD49d, CD90, CD105 and HLA-DR cell surface markers. We differentiated the hADSCs into the neuronal lineage by using chemical induction medium and observed the cells with contrast microscopy. The immunocytochemistry and western blotting were performed using the NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III antibodies. Results: The hADSCs were positive for CD13($90.3{\pm}4%$), CD29($98.9{\pm}0.7%$), CD49d($13.6{\pm}6%$), CD90 ($99.4{\pm}0.1%$), CD105($96%{\pm}2.8%$) but negative for CD34, CD45 and HLA-DR. The untreated cultures of hADSCs predominately consisted of spindle shaped cells and a few large, flat cells. Three hours after the addition of induction medium, the hADSCs had changed morphology and adopted neuronal-like phenotypes. The result of immunocytochemistry and western blotting showed that NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III were expressed. However, NSE, NeuN, Vimentin were weakly expressed in the control. Conclusion: Theses results indicate that hADSCs have the capabillity of differentiating into neuronal lineage in a specialized culture medium. hADSCs may be useful in the treatment of a wide variety of neurological disorders.

The Effects of Venlafaxine on Neurite Growth of PC12 Cells (벤라팍신이 PC12 세포의 신경돌기 성장에 미치는 영향)

  • Oh, Hong-Seok;Choi, Joon-Ho;Lee, Jun-Seok;Lee, Joon-Noh;Choi, Mi-Ran;Chai, Young-Gyu;Kim, Seok-Hyeon;Yang, Byung-Hwan
    • Korean Journal of Biological Psychiatry
    • /
    • 제10권2호
    • /
    • pp.126-132
    • /
    • 2003
  • Objectives:The purpose of this study is to examine the effects of venlafaxine, one of novel antidepressant drugs, on neurite growth in PC12 cells. Methods:PC12 cells were cultured with NGF for eight days. Then different concentrations($0{\mu}M$, $1{\mu}M$, $5{\mu}M$) of venlafaxine were mixed with cultured PC12 cells. After 24 hours and 48 hours of culture, we compared the effects of venlafaxine on the total length of neurites of cultured PC12 cells between no venlafaxine treated group($0{\mu}M$) and venlafaxine treated groups($1{\mu}M$ and $5{\mu}M$). Additionally, we studied the concentration-dependent effect of venlafaxine on differentiation in PC12 cells. Results:Experimental results showed that 1) the mean length of neurites in $1{\mu}M$ and $5{\mu}M$ venlafaxine treated group was more increased than no venlafaxine treated group(p=0.002). 2) the length of neurite in $5{\mu}M$ venlafaxine treated group was more elongated than $1{\mu}M$ venlafaxine treated group(p=0.046). 3) the length of neurite in $6{\mu}M$ venlafaxine treated group was more elongated than all the other concentrations in our experiment. Above $6{\mu}M$, the length of neurite was shortened in inverse proportion to the concentration of venlafaxine. Conclusions:This results suggest that venlafaxine, one of novel antidepressant drugs, promotes the differentiation of neuron. This study is believed to be a first step toward understanding the molecular and cellular mechanisms of antidepressant treatment.

  • PDF

BRI3 associates with SCG10 and attenuates NGF-induced neurite outgrowth in PC12 cells

  • Gong, Yanhua;Wu, Jing;Qiang, Hua;Liu, Ben;Chi, Zhikai;Chen, Tao;Yin, Bin;Peng, Xiaozhong;Yuan, Jiangang
    • BMB Reports
    • /
    • 제41권4호
    • /
    • pp.287-293
    • /
    • 2008
  • In a yeast two-hybrid screen, we identified the microtubule-destabilizing protein SCG10 as a potential effector protein of $BRI_3$. The association was verified using GST pull-down, Co-IP, and their perinuclear co-localization. The analysis of in vitro microtubule polymerization/depolymerization showed that the binding of $BRI_3$ to SCG10 effectively blocked the ability of SCG10 to induce microtubule disassembly, as determined by turbidimetric assays. In intact PC12 cells, $BRI_3$ exhibited the ability to stabilize the microtubule network and attenuate the microtubule-destabilizing activity of SCG10. Furthermore, co-expression of $BRI_3$ with SCG10 attenuated SCG10-mediated PC12 cell neurite outgrowth induced by NGF. These results identify a novel connection between a neuron-specific BRI protein and the cytoskeletal network, suggesting possible roles of BRI3 in the process of neuronal differentiation.