Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.6.724

Epigenomic Alteration in Replicative Senescent-mesenchymal Stem Cells  

Oh, Youn Seo (Department of Biology, College of Natural Science, Chosun University)
Cho, Goang-Won (Department of Biology, College of Natural Science, Chosun University)
Publication Information
Journal of Life Science / v.25, no.6, 2015 , pp. 724-731 More about this Journal
Abstract
Mesenchymal stem cells (MSCs) are characterized by their multipotency capacity, which allows them to differentiate into diverse cell types (bone, cartilage, fat, tendon, and neuron-like cells) and secrete a variety of trophic factors (ANG, FGF-2, HGF, IGF-1, PIGF, SDF-1α, TGF-β, and VEGF). MSCs can be easily isolated from human bone-marrow, fat, and umbilical-cord tissues. These features indicate that MSCs might be of use in stem-cell therapy. However, MSCs undergo cellular senescence during long-term expansion, and this is accompanied by functional declines in stem-cell potency. In the human body, because of their senescence and declines in their microenvironmental niches stem cells fail to maintain tissue homeostasis, and as a result, senescent cells accumulate in tissues. This can lead to age-related diseases, including degenerative disorders and cancers. Recent studies suggest that the number of histone modifications to stem cells’ genomes and aberrant alterations to their DNA methylation increase as stem cells progress into senescence. These epigenetic alterations have been partly reversed with treatments in which DNA methyltransferase (DNMT) inhibitors or histone deacetylase (HDAC) inhibitors are introduced into replicative senescent-MSCs. This review focuses on epigenetic alteration in replicative senescent-MSCs and explains how epigenetic modifications are widely associated with stem-cell senescences such as differentiation, proliferation, migration, calcium signaling, and apoptosis.
Keywords
DNA methylation; epigenetics; histone actylation; mesenchymal stem cells; senescence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Soriano-Canton, R., Perez-Villalba, A., Morante-Redolat, J. M., Marques-Torrejon, M. A., Pallas, M., Perez-Sanchez, F. and Farinas, I. 2015. Regulation of the p19 (Arf) /p53 pathway by histone acetylation underlies neural stem cell behavior in senescence-prone SAMP8 mice. Aging Cell 14, 453-462.   DOI
2 Sperka, T., Wang, J. and Rudolph, K. L. 2012. DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol. 13, 579-590.   DOI   ScienceOn
3 Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676.   DOI
4 Wang, D. H., Hu, J. R., Wang, L. Y., Hu, Y. J., Tan, F. Q., Zhou, H., Shao, J. Z. and Yang, W. X. 2012. The apoptotic function analysis of p53, Apaf1, Caspase3 and Caspase7 during the spermatogenesis of the Chinese fire-bellied newt Cynops orientalis. PLoS One 7, e39920.   DOI
5 Pal, H. C., Sharma, S., Elmets, C. A., Athar, M. and Afaq, F. 2013. Fisetin inhibits growth, induces G(2) /M arrest and apoptosis of human epidermoid carcinoma A431 cells: role of mitochondrial membrane potential disruption and consequent caspases activation. Exp. Dermatol. 22, 470-475.   DOI
6 Pollina, E. A. and Brunet, A. 2011. Epigenetic regulation ofaging stem cells. Oncogene 30, 3105-3126.   DOI
7 Rayess, H., Wang, M. B. and Srivatsan, E. S. 2012. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 130, 1715-1725.   DOI   ScienceOn
8 Sawatjui, N., Damrongrungruang, T., Leeanansaksiri, W., Jearanaikoon, P., Hongeng, S. and Limpaiboon, T. 2015. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells. Mater. Sci. Eng. C Mater. Biol. Appl. 52, 90-96.   DOI
9 Choi, M. R., In, Y. H., Park, J., Park, T., Jung, K. H., Chai, J. C., Chung, M. K., Lee Y. S., and Chai, Y. G. 2012. Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture. Exp. Mol. Med. 44, 503-512.   DOI   ScienceOn
10 Choi, M. R., Kim, H. Y., Park, J. Y., Lee, T. Y., Baik, C. S., Chai, Y. G., Jung, K. H., Park, K. S., Roh, W., Kim, K. S. and Kim, S. H. 2010. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci. Lett. 472, 94-98.   DOI
11 Docherty, K., Bernardo, A. S. and Vallier, L. 2007. Embryonic stem cell therapy for diabetes mellitus. Semin. Cell Dev. Biol. 18, 827-838.   DOI
12 Efimenko, A., Dzhoyashvili, N., Kalinina, N., Kochegura, T.,Akchurin, R., Tkachuk, V. and Parfyonova, Y. 2014. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential. Stem Cells Transl. Med. 3, 32-41.   DOI
13 Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. and Kaldis, P. 2003. Cdk2 knockout mice are viable. Curr. Biol. 13, 1775-1785.   DOI
14 Beausejour, C. M., Krtolica, A., Galimi, F., Narita, M., Lowe, S. W., Yaswen, P. and Campisi, J. 2003. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212-4222.   DOI
15 Beerman, I., Seita, J., Inlay, M. A., Weissman, I. L. and Rossi, D. J. 2014. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15, 37-50.   DOI
16 Schellenberg, A., Lin, Q., Schuler, H., Koch, C. M., Joussen, S., Denecke, B., Walenda, G., Pallua, N., Suschek, C. V., Zenke, M. and Wagner, W. 2011. Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging 3, 873-888.   DOI
17 Redaelli, S., Bentivegna, A., Foudah, D., Miloso, M., Redondo, J., Riva, G., Baronchelli, S., Dalpra, L. and Tredici, G. 2012. From cytogenomic to epigenomic profiles: monitoring the biologic behavior of in vitro cultured human bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 3, 47.   DOI
18 Robledo, R. F., Rajan, L., Li, X. and Lufkin, T. 2002. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development. Genes Dev. 16, 1089-1101.   DOI
19 Rombouts, W. J. and Ploemacher, R. E. 2003. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17, 160-170.   DOI
20 Joe, I. S., Jeong, S. G. and Cho, G. W. 2015. Resveratrol-induced SIRT1 activation promotes neuronal differentiation of human bone marrow mesenchymal stem cells. Neurosci. Lett. 584, 97-102.   DOI
21 Krishnamurthy, J., Ramsey, M. R., Ligon, K. L., Torrice, C.,Koh, A., Bonner-Weir, S. and Sharpless, N. E. 2006. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453-457.   DOI
22 Nelson, W. J. and Nusse, R. 2004. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303, 1483-1487.   DOI   ScienceOn
23 Li, Z., Liu, C., Xie, Z., Song, P., Zhao, R. C., Guo, L., Liu, Z. and Wu, Y. 2011. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6, e20526.   DOI
24 Calado, R. T. and Young, N. S. 2008. Telomere maintenance and human bone marrow failure. Blood 111, 4446-4455.   DOI
25 Bork, S., Pfister, S., Witt, H., Horn, P., Korn, B., Ho, A. D. and Wagner, W. 2010. DNA methylation pattern changes upon long-term culture and aging of human mesenchymal stromal cells. Aging Cell 9, 54-63.   DOI
26 Bothner, B., Lewis, W. S., DiGiammarino, E. L., Weber, J. D., Bothner, S. J. and Kriwacki, R. W. 2001. Defining the molecular basis of Arf and Hdm2 interactions. J. Mol. Biol. 314, 263-277.   DOI
27 Bruder, S. P., Jaiswal, N. and Haynesworth, S. E. 1997. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell Biochem. 64, 278-294.   DOI
28 Cao, Z., Chen, X., Lin, W., Zhao, J., Zheng, L., Ye, H., Liao, L. and Du, J. 2015. Jiedu Xiaozheng Yin decoction inhibits hepatoma cell proliferation by inducing apoptosis via the mitochondrial-mediated pathway. Mol. Med. Rep. 12, 2800-2806.   DOI
29 Yan, X., Ehnert, S., Culmes, M., Bachmann, A., Seeliger, C.,Schyschka, L., Wang, Z., Rahmanian-Schwarz, A., Stockle, U., De Sousa, P. A., Pelisek, J. and Nussler, A. K. 2014. 5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PLoS One 9, e90846.   DOI
30 Wang, Y., Chen, T., Yan, H., Qi, H., Deng, C., Ye, T., Zhou,S. and Li, F. R. 2013. Role of histone deacetylase inhibitors in the aging of human umbilical cord mesenchymal stem cells. J. Cell Biochem. 114, 2231-2239.   DOI
31 Yuan, Z., Li, Q., Luo, S., Liu, Z., Luo, D., Zhang, B., Zhang, D., Rao, P. and Xiao, J. 2015. PPARgamma and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr. Stem Cell Res. Ther. 10, 1-10.
32 thne, X., Tang, N., Hadden, T. J. and Rishi, A. K. 2011. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta 1813, 1978-1986.   DOI
33 Oh, Y. S., Jeong, S. G. and Cho, G. W. 2015. Anti-senescenceeffects of DNA methyltransferase inhibitor RG108 in human bone marrow mesenchymal stromal cells. Biotechnol. Appl. Biochem.
34 Lopes, G. S., Ferreira, A. T., Oshiro, M. E., Vladimirova, I., Jurkiewicz, N. H., Jurkiewicz, A. and Smaili, S. S. 2006. Aging-related changes of intracellular Ca2+ stores and contractile response of intestinal smooth muscle. Exp. Gerontol. 41, 55-62.   DOI
35 Mimeault, M. and Batra, S. K. 2009. Recent insights into themolecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications. Ageing Res. Rev. 8, 94-112.   DOI
36 Noer, A., Boquest, A. C. and Collas, P. 2007. Dynamics of adipogenic promoter DNA methylation during clonal culture of human adipose stem cells to senescence. BMC Cell Biol. 8, 18.   DOI
37 Ermak, G. and Davies, K. J. 2002. Calcium and oxidative stress: from cell signaling to cell death. Mol. Immunol. 38, 713-721.   DOI
38 Han, B., Li, J., Li, Z., Guo, L., Wang, S., Liu, P. and Wu, Y. 2013. Trichostatin A stabilizes the expression of pluripotent genes in human mesenchymal stem cells during ex vivo expansion. PLoS One 8, e81781.   DOI
39 Hidalgo, I. and Gonzalez, S. 2013. New epigenetic pathway for stemness maintenance mediated by the histone methyl-transferase Ezh1. Cell Cycle 12, 383-384.   DOI
40 Hanzelmann, S., Beier, F., Gusmao, E. G., Koch, C. M., Hummel, S., Charapitsa, I., Joussen, S., Benes, V., Brummendorf, T. H., Reid, G., Costa, I. G. and Wagner, W. 2015. Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin. Epigenetics 7, 19.   DOI
41 Schubeler, D. 2015. Function and information content of DNA methylation. Nature 517, 321-326.   DOI
42 Zhao, C., Deng, W. and Gage, F. H. 2008. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645-660.   DOI
43 Zhou, G. S., Zhang, X. L., Wu, J. P., Zhang, R. P., Xiang, L. X., Dai, L. C. and Shao, J. Z. 2009. 5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation. Cytotechnology 60, 11-22.   DOI
44 Zhu, Y., Song, X., Wang, J., Li, Y., Yang, Y., Yang, T., Ma,H., Wang, L., Zhang, G., Cho, W. C., Liu, X. and Wei, J. 2015. Placental mesenchymal stem cells of fetal origin deposit epigenetic alterations during long-term culture under serum-free condition. Expert. Opin. Biol. Ther. 15, 163-180.
45 Shibata, K. R., Aoyama, T., Shima, Y., Fukiage, K., Otsuka, S., Furu, M., Kohno, Y., Ito, K., Fujibayashi, S., Neo, M., Nakayama, T., Nakamura, T. and Toguchida, J. 2007. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells 25, 2371-2382.   DOI
46 Smaili, S., Hirata, H., Ureshino, R., Monteforte, P. T., Morales, A. P., Muler, M. L., Terashima, J., Oseki, K., Rosenstock, T. R., Lopes, G. S. and Bincoletto, C. 2009. Calcium and cell death signaling in neurodegeneration and aging. An. Acad. Bras. Cienc. 81, 467-475.   DOI
47 Tao, W. and Levine, A. J. 1999. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc. Natl. Acad. Sci. USA 96, 3077-3080.   DOI
48 Hoare, M., Das, T. and Alexander, G. 2010. Ageing, telomeres, senescence, and liver injury. J. Hepatol. 53, 950-961.   DOI
49 Haupt, S., Berger, M., Goldberg, Z. and Haupt, Y. 2003. Apoptosis - the p53 network. J. Cell Sci. 116, 4077-4085.   DOI
50 Henningson, C. T. Jr., Stanislaus, M. A. and Gewirtz, A. M. 2003. Embryonic and adult stem cell therapy. J. Allergy Clin. Immunol. 111, S745-753.   DOI
51 Jeong, S. G. and Cho, G. W. 2015. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem. Biophys. Res. Commun. 460, 971-976.   DOI
52 Jeong, S. G., Ohn, T., Kim, S. H. and Cho, G. W. 2013. Valproic acid promotes neuronal differentiation by induction of neuroprogenitors in human bone-marrow mesenchymal stromal cells. Neurosci. Lett. 554, 22-27.   DOI
53 Cho, G. W., Koh, S. H., Kim, M. H., Yoo, A. R., Noh, M. Y., Oh, S. and Kim, S. H. 2010. The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res. 1353, 1-13.   DOI
54 Dimri, G. P., Nakanishi, M., Desprez, P. Y., Smith, J. R. and Campisi, J. 1996. Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol. Cell Biol. 16, 2987-2997.   DOI
55 Cho, H. H., Park, H. T., Kim, Y. J., Bae, Y. C., Suh, K. T. and Jung, J. S. 2005. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J. Cell Biochem. 96, 533-542.   DOI   ScienceOn