• 제목/요약/키워드: neurogenesis

검색결과 130건 처리시간 0.03초

Promotion of cAMP Responsive Element-Binding Protein Activity Ameliorates Radiation-Induced Suppression of Hippocampal Neurogenesis in Adult Mice

  • Kim, Joong-Sun;Yang, Mi-Young;Cho, Jae-Ho;Kim, Sung-Ho;Kim, Jong-Choon;Shin, Tae-Kyun;Moon, Chang-Jong
    • Toxicological Research
    • /
    • 제26권3호
    • /
    • pp.177-183
    • /
    • 2010
  • This study was performed to examine whether elevated activity of cAMP responsive element-binding protein (CREB) attenuates the detrimental effects of acute gamma ($\gamma$)-irradiation on hippocampal neurogenesis and related functions. C57BL/6 male mice were treated with rolipram (1.25 mg/kg, i.p., twice a day for 5 consecutive days) to activate the cAMP/CREB pathway against cranial irradiation (2 Gy), and were euthanized at 24 h post-irradiation. Exposure to $\gamma$-rays decreased both CREB phosphorylation and immunohistochemical markers for neurogenesis, including Ki-67 and doublecortin (DCX), in the hippocampal dentate gyrus (DG). However, the rolipram treatment protected from $\gamma$-irradiation-induced decreases of CREB phosphorylation, and Ki-67 and DCX immunoreactivity in the hippocampal DG. In an object recognition memory test, mice trained 24 h after acute $\gamma$-irradiation (2 Gy) showed significant memory impairment, which was attenuated by rolipram treatment. The results suggest that activation of CREB signaling ameliorates the detrimental effects of acute $\gamma$-irradiation on hippocampal neurogenesis and related functions in adult mice.

Comparison of Neurite Outgrowth Induced by Erythropoietin (EPO) and Carbamylated Erythropoietin (CEPO) in Hippocampal Neural Progenitor Cells

  • Oh, Dong-Hoon;Lee, In-Young;Choi, Mi-Yeon;Kim, Seok-Hyeon;Son, Hyeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권4호
    • /
    • pp.281-285
    • /
    • 2012
  • A previous animal study has shown the effects of erythropoietin (EPO) and its non-erythropoietic carbamylated derivative (CEPO) on neurogenesis in the dentate gyrus. In the present study, we sought to investigate the effect of EPO on adult hippocampal neurogenesis, and to compare the ability of EPO and CEPO promoting dendrite elongation in cultured hippocampal neural progenitor cells. Two-month-old male BALB/c mice were given daily injections of EPO (5 U/g) for seven days and were sacrificed 12 hours after the final injection. Proliferation assays demonstrated that EPO treatment increased the density of bromodeoxyuridine (BrdU)-labeled cells in the subgranular zone (SGZ) compared to that in vehicle-treated controls. Functional differentiation studies using dissociated hippocampal cultures revealed that EPO treatment also increased the number of double-labeled BrdU/microtubulea-ssociated protein 2 (MAP2) neurons compared to those in vehicle-treated controls. Both EPO and CEPO treatment significantly increased the length of neurites and spine density in MAP2(+) cells. In summary, these results provide evidences that EPO and CEPO promote adult hippocampal neurogenesis and neuronal differentiation. These suggest that EPO and CEPO could be a good candidate for treating neuropsychiatric disorders such as depression and anxiety associated with neuronal atrophy and reduced hippocampal neurogenesis.

Impaired Memory in OT-II Transgenic Mice Is Associated with Decreased Adult Hippocampal Neurogenesis Possibly Induced by Alteration in Th2 Cytokine Levels

  • Jeon, Seong Gak;Kim, Kyoung Ah;Chung, Hyunju;Choi, Junghyun;Song, Eun Ji;Han, Seung-Yun;Oh, Myung Sook;Park, Jong Hwan;Kim, Jin-il;Moon, Minho
    • Molecules and Cells
    • /
    • 제39권8호
    • /
    • pp.603-610
    • /
    • 2016
  • Recently, an increasing number of studies have focused on the effects of CD4+ T cell on cognitive function. However, the changes of Th2 cytokines in restricted CD4+ T cell receptor (TCR) repertoire model and their effects on the adult hippocampal neurogenesis and memory are not fully understood. Here, we investigated whether and how the mice with restricted CD4+ repertoire TCR exhibit learning and memory impairment by using OT-II mice. OT-II mice showed decreased adult neurogenesis in hippocampus and short- and long- term memory impairment. Moreover, Th2 cytokines in OT-II mice are significantly increased in peripheral organs and IL-4 is significantly increased in brain. Finally, IL-4 treatment significantly inhibited the proliferation of cultured adult rat hippocampal neural stem cells. Taken together, abnormal level of Th2 cytokines can lead memory dysfunction via impaired adult neurogenesis in OT-II transgenic.

The Effect of Acupuncture in Promoting Neurogenesis and Angiogenesis after Middle Cerebral Artery Occlusion in Rats

  • Lee, Hong Min;Nam, Sang Soo;Kim, Yong Suk
    • Journal of Acupuncture Research
    • /
    • 제30권3호
    • /
    • pp.1-13
    • /
    • 2013
  • Objectives : This study was performed to choose more effective neuro-protective acupuncture point and to verify the effect of acupuncture in promoting neurogenesis and angiogenesis as a result of its neuro-vasculo-regenerative effect in middle cerebral artery occlusion model in rats. Methods : By TTc staining we chose the most effective acupuncture point with neuro-protection. We randomly divided into four groups: Such as (1) sham group(with sham-operation), (2) sham+acupuncture group(with sham-operation), (3) middle cerebral artery occlusion group, (4) MCAO+AT group. Acupuncture procedure was performed for four days. Total RNA was extracted using TRIzol reagent, according to the manufacturer's instructions, and was purified using an RNAeasy mini kit. Immuno-histochemistry was performed using primary antibody mouse anti-BrdU, NeuN, Dcx, and VEGF. Results : We found that $ST_{36}$ had the more neuroprotective effect than $LI_{11}$ and $SP_3$. The microarray analysis revealed that 54 genes were more expressed neurogenesis pathway in MCAO+AT group compared with MCAO group(fold changes greater than or equal to twofold change). 11 genes were more expressed angiogenesis pathway. And 7 genes were more expressed VEGF pathway. Immuno-histochemistry revealed that cell proliferation, cell migration and cell maturation were increased. Conclusions : This study demonstrated that acupuncture on $ST_{36}$ had neuro-protective and neuro-restorative effect in ischemic brain injuries. And its mechanism might be related to promote neurogenesis and angiogenesis. These results suggest that acupuncture have potential benefits for the treatment of ischemic stroke.

Safflower seed oil, a rich source of linoleic acid, stimulates hypothalamic neurogenesis in vivo

  • Mehrzad Jafari Barmak;Ebrahim Nouri;Maryam Hashemi Shahraki;Ghasem Ghalamfarsa;Kazem Zibara;Hamdallah Delaviz;Amir Ghanbari
    • Anatomy and Cell Biology
    • /
    • 제56권2호
    • /
    • pp.219-227
    • /
    • 2023
  • Adult neurogenesis has been reported in the hypothalamus, subventricular zone and subgranular zone in the hippocamp. Recent studies indicated that new cells in the hypothalamus are affected by diet. We previously showed beneficial effects of safflower seed oil (SSO), a rich source of linoleic acid (LA; 74%), on proliferation and differentiation of neural stem cells (NSCs) in vitro. In this study, the effect of SSO on hypothalamic neurogenesis was investigated in vivo, in comparison to synthetic LA. Adult mice were treated with SSO (400 mg/kg) and pure synthetic LA (300 mg/kg), at similar concentrations of LA, for 8 weeks and then hypothalamic NSCs were cultured and subsequently used for Neurosphere-forming assay. In addition, serum levels of brain-derived neurotrophic factor (BNDF) were measured using enzyme-linked immunosorbent assay. Administration of SSO for 8 weeks in adult mice promoted the proliferation of NSCs isolated from SSO-treated mice. Immunofluorescence staining of the hypothalamus showed that the frequency of astrocytes (glial fibrillary acidic protein+ cells) are not affected by LA or SSO. However, the frequency of immature (doublecortin+ cells) and mature (neuronal nuclei+ cells) neurons significantly increased in LA- and SSO-treated mice, compared to vehicle. Furthermore, both LA and SSO caused a significant increase in the serum levels of BDNF. Importantly, SSO acted more potently than LA in all experiments. The presence of other fatty acids in SSO, such as oleic acid and palmitic acid, suggests that they could be responsible for SSO positive effect on hypothalamic proliferation and neurogenesis, compared to synthetic LA at similar concentrations.

출생 후 뇌의 내인성 신경세포 생성 (Endogenous Neurogenesis in Postnatal Brain)

  • 장윤실
    • Clinical and Experimental Pediatrics
    • /
    • 제48권8호
    • /
    • pp.806-812
    • /
    • 2005
  • Repair mechanisms in the postnatal and mature central nervous system(CNS) have long been thought to be very limited. However recent works have shown that the mature CSN contains neural progenitors, precursors, and stem cells that are capable of generating new neurons, astrocytes, and oligodendrocytes especially in germinative areas such as the subventricular zone of the lateral ventricles, the dentate gyrus of the hippocampus. These findings raise the possibilities for the development of novel neural repair strategies via mobilization and replacement for dying neurons of neural stem cells in situ. Indeed recent reports have provided evidences that endogenous stem cells are activated in response to various injuries, and in some injury models, limited neuronal replacement occurs in the CNS. Here, current understandings for endogenous neurogenesis and induction neurogeneis in postnatal CNS including neonatal brain are summarized and discussed.

ErbB3 binding protein 1 contributes to adult hippocampal neurogenesis by modulating Bmp4 and Ascl1 signaling

  • Youngkwan Kim;Hyo Rim Ko;Inwoo Hwang;Jee-Yin Ahn
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.182-187
    • /
    • 2024
  • Neural stem cells (NSCs) in the adult hippocampus divide infrequently; the endogenous molecules modulating adult hippocampal neurogenesis (AHN) remain largely unknown. Here, we show that ErbB3 binding protein 1 (Ebp1), which plays important roles in embryonic neurodevelopment, acts as an essential modulator of adult neurogenic factors. In vivo analysis of Ebp1 neuron depletion mice showed impaired AHN with a low number of hippocampal NSCs and neuroblasts. Ebp1 leads to transcriptional repression of Bmp4 and suppression of Ascl1 promoter methylation in the dentate gyrus of the adult hippocampus reflecting an unusually high level of Bmp4 and low Ascl1 level in neurons of Ebp1-deficient mice. Therefore, our findings suggests that Ebp1 could act as an endogenous modulator of the interplay between Bmp4 and Ascl1/Notch signaling, contributing to AHN.

반복 스트레스에 의한 흰쥐 해마조직내 신경전구세포의 생성과 brain-derived neurotrophic factor (BDNF) mRNA 발현 변동에 미치는 고려홍삼 사포닌의 반복 투여 효과 (Effects of Korea Red Ginseng Total Saponin on Repeated Unpredictable Stress-induced Changes of Proliferation of Neural Progenitor Cells and BDNF mRNA Expression in Adult Rat Hippocampus)

  • 김동훈;곽규환;이금주;김성진;신유찬;전보권;신경호
    • Journal of Ginseng Research
    • /
    • 제28권2호
    • /
    • pp.94-103
    • /
    • 2004
  • 본 연구 결과를 통하여 홍삼 성분인 고려홍삼 사포닌을 반복 투여시 흰쥐 해마 SGZ 부위의 신경전구세포 생성이 유의하게 증가되었으며, 이와 같은 경향은 반복 스트레스에 노출되어도 유지되었다. 또한 스트레스를 가하지 않은 흰쥐에서 고려홍삼 사포닌 반복 투여시 해마 CA3와 CA1 부위에서 BDNF mRNA의 발현이 증가되었으나, 반복 스트레스를 가한 흰쥐의 CA3와 CA1부위에서 BDNF mRNA의 감소를 차단하지는 못하였다. 따라서 고려홍삼 사포닌 반복 처치에 의한 해마 신경전구세포의 생성에 BDNF 보다는 다른 요인이 관여할 가능성이 클 것으로 추정된다.

Molecular Mechanism of Dietary Restriction in Neuroprevention and Neurogenesis: Involvement of Neurotrophic Factors

  • Park, Hee-Ra;Park, Mi-Kyung;Kim, Hyung-Sik;Lee, Jae-Won
    • Toxicological Research
    • /
    • 제24권4호
    • /
    • pp.245-251
    • /
    • 2008
  • Dietary restriction (DR) is the most efficacious intervention for retarding the deleterious effects of aging. DR increases longevity, decreases the occurrence and severity of age-related diseases, and retards the physiological decline associated with aging. The beneficial effects of DR have been mostly studied in non-neuronal tissues. However, several studies have showed that DR attenuate neuronal loss after several different insults including exposure to kainate, ischemia, and MPTP. Moreover, administration of the non-metabolizable glucose analog 2-deoxy-D-glucose (2DG) could mimic the neuroprotective effect of DR in rodent, presumably by limiting glucose availability at the cellular level. Based on the studies of chemically induced DR, it has been proposed that the mechanism whereby DR and 2DG protect neurons is largely mediated by stress response proteins such as HSP70 and GRP78 which are increased in neurons of rats and mice fed a DR regimen. In addition, DR, as mild metabolic stress, could lead to the increased activity in neuronal circuits and thus induce expression of neurotrophic factors. Interestingly, such increased neuronal activities also enhance neurogenesis in the brains of adult rodents. In this review, we focus on what is known regarding molecular mechanisms of the protective role of DR in neurodegenerative diseases and aging process. Also, we propose that DR is a mild cellular stress that stimulates production of neurotrophic factors, which are major regulators of neuronal survival, as well as neurogenesis in adult brain.

방사선 조사 마우스에서 학습기억 장애에 대한 홍삼의 효과 (Effect of Red Ginseng on Radiation-induced Learning and Memory Impairment in Mouse)

  • 이해준;김중선;문창종;김종춘;조성기;장종식;김성호
    • Journal of Ginseng Research
    • /
    • 제33권2호
    • /
    • pp.132-138
    • /
    • 2009
  • Previous studies suggest that even low-dose irradiation can lead to progressive cognitive decline and memory deficits, which implicates, in part, hippocampal dysfunction in both humans and experimental animals. In this study, whether red ginseng (RG) could attenuate memory impairment was investigated through a passive-avoidance and object recognition memory test, as well as the suppression of hippocampal neurogenesis, using the TUNEL assay and immunohistochemical detection with markers of neurogenesis (Ki-67 and doublecortin (DCX)) in adult mice treated with a relatively low-dose exposure to gamma radiation (0.5 or 2.0 Gy). RG was administered intraperitonially at a dosage of 50 mg/kg of body weight, at 36 and 12 h pre-irradiation and at 30 minutes post-irradiation, or orally at a dosage of 250 mg! kg of body weight/day for seven days before autopsy. In the passive-avoidance and object recognition memory test, the mice that were trained for one day after acute irradiation (2 Gy) showed significant memory deficits compared with the sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 12 h after irradiation. In addition, the number of Ki-67- and DCX-positive cells was significantly decreased. RG treatment prior to irradiation attenuated the memory defect and blocked apoptotic death as well as a decrease in the Ki-67- and DCX-positive cells. RG may attenuate memory defect in a relatively low-dose exposure to radiation in adult mice, possibly by inhibiting the detrimental effect of irradiation on hippocampal neurogenesis.