• 제목/요약/키워드: neurodegeneration

검색결과 180건 처리시간 0.034초

카드뮴이 흰쥐 뇌기저핵의 유전자 발현에 미치는 영향 (Effects of Cadmium on the Gene Expression Profile in the Rat Basal Ganglia)

  • 이채관
    • 한국산업보건학회지
    • /
    • 제20권1호
    • /
    • pp.29-40
    • /
    • 2010
  • This study was aimed at investigating the gene expression profile in basal ganglia of cadmium exposed rat based on cDNA array analysis. For cDNA array analysis, adult Sprague-Dawley male rats (350 ${\pm}$ 25 g) were intraperitoneally injected with 2.0 mg/kg body weight/day of CdCl2 (0.3 ml) for 5 days. For doserelated gene expression analysis rats were intraperitoneally injected with 0.0, 0.1, 0.3, 1.0 mg/kg body weight/day of CdCl$_2$ for 5 days. Control rats were injected with equal volume of saline. Cadmium concentration of brain was analyzed by atomic absorption spectrophotometer. For cDNA array, RNA samples were extracted from basal ganglia and reverse-transcribed in the presence of [${\alpha}$32P]-dATP. Membrane sets of the Atlas Rat 1.2 array II and Toxicology array 1.2 (Clontech, Palo Alto, CA) were hybridized with cDNA probe sets. RT-PCR was employed to validate the relative gene expression patterns obtained from the cDNA array. Northern blot hybridization methods were employed to assess the dose-related gene expression. Among the 2352 cDNAs, 671 genes were detected in both array sets and 63 genes of 38 classes showed significant (more than two fold) changes in expression. Thirty five of these genes were up-regulated and twenty eight were down-regulated in the cadmium exposed group. According to the dose-related gene expression analysis, heat shock 27 kDa protein (HSP27), neurodegeneration-associated protein 1 (Neurodap 1) genes were significantly up-regulated and melatonin receptor 1a (Mel1a), Kinesin family member 3C (KIF3C), novel kinesinrelated protein (KIF1D) genes were significantly downregulated even in the low-dose of cadmium exposed group (0.1 mg/kg body weight/day). Conclusions Sixty three genes detected in this study can give some more useful informations about the cadmium-induced neurotoxicity in the basal ganglia. As well as, HSP27, Neurodap1, Mel1a, KIF3C and KIF1D genes may be useful for the study of the cadmium-induced neurotoxicity because these genes showed dramatic changes of mRNA levels in response to the low dose of cadmium exposure.

흰쥐 astrocyte에 있어서 $amyloid-{\beta}$에 의한 독성과 지질과산화에 미치는 천축황(天竺黃)의 영향 (Effects of Bombusae concretio Salicea on $Amyloid-{\beta}$-induced Neuronal Cell Toxicity and Lipid Peroxidation in Cultured Rat Astrocytes)

  • 이우헌;정지천
    • 대한한방내과학회지
    • /
    • 제19권2호
    • /
    • pp.381-391
    • /
    • 1998
  • 천축황(天竺黃)은 한의학에서 청풍열(淸風熱)과 치담(治痰)하는 효능으로 중풍과 불어증(不語症)을 치료하는데 널리 사용되고 있다. 본 연구에서는 천축황(天竺黃)이 실험적인 치매(Alzheimer Disease; AD)를 유발시키는 물질로 알려진 $amyloid-{\beta}\;(A{\beta}\;peptide)$를 흰쥐의 신경세포의 일종인 astrocyte에 처리하여 그 세포독성과 보호효과 및 세포막 지질의 과산화에 미치는 영향을 검토하였다. 천축황(天竺黃)은 $A{\beta}$에 의한 신경세포에 대한 손상을 억제하여 세포증식을 촉진하여 예방 및 보호효과를 나타내었다. 또한, 세포막 지질의 과산화의 지표인 malondialdehyde (MDA)생성이 $A{\beta}$처리로 크게 증가하였으나 세포막 파괴에 의한 뇌세포 파괴의 전형적인 현상이 천축황(天竺黃)의 전(前)처리와 후(後)처리로 크게 감소되었다. 그리고, 이러한 결과들은 천축황(天竺黃)이 신경세포의 하나인 astrocyte에 대한 보호효과와 세포막지질의 과산화 저해 및 $A{\beta}$처리와 같은 치매유발 독성에 대한 적응능력 향상을 통한 뇌신경의 보호효과를 주는 것으로 노인성 치매 등 임상적 응용에 그 효과가 기대된다.

  • PDF

Synthetic Prion Peptide 106-126 Resulted in an Increase Matrix Metalloproteinases and Inflammatory Cytokines from Rat Astrocytes and Microglial Cells

  • Song, Kib-Beum;Na, Ji-Young;Oh, Myung-Hoon;Kim, Sok-Ho;Kim, Young-Ha;Park, Byung-Yong;Shin, Gi-Wook;Kim, Bum-Seok;You, Myung-Jo;Kwon, Jung-Kee
    • Toxicological Research
    • /
    • 제28권1호
    • /
    • pp.5-9
    • /
    • 2012
  • It has been shown that the accumulation of prion in the cytoplasm can result in neurodegenerative disorders. Synthetic prion peptide 106-126 (PrP) is a glycoprotein that is expressed predominantly by neurons and other cells, including glial cells. Prion-induced chronic neurodegeneration has a substantial inflammatory component, and an increase in the levels of matrix metalloproteinases (MMPs) may play an important role in neurodegenerative development and progression. However, the expression of MMPs in PrP induced rat astrocytes and microglia has not yet been compared. Thus, in this study, we examined the fluorescence intensity of CD11b positive microglia and Glial Fibrillary Acidic Protein (GFAP) positive astrocytes and found that the fluorescent intensity was increased following incubation with PrP at 24 hours in a dose-dependent manner. We also observed an increase in interleukin-1 beta (IL-$1{\beta}$) and tumor necrosis factor alpha (TNF-${\alpha}$) protein expression, which are initial inflammatory cytokines, in both PrP induced astrocytes and microglia. Furthermore, an increase MMP-1, 3 and 11 expressions in PrP induced astrocytes and microglia was observed by real time PCR. Our results demonstrated PrP induced activation of astrocytes and microglia respectively, which resulted in an increase in inflammatory cytokines and MMPs expression. These results provide the insight into the different sensitivities of glial cells to PrP.

오미자 활성성분 DDB의 NF-${\kappa}B$ 신호 전달 및 염증물질 발현 조절 (Regulation of Inflammatory Repertoires and NF-${\kappa}B$ Signal Transduction by DDB, an Active Compound from Schizandra Chinensis Baillon)

  • 주성수;유영민;원태준;김민정;이선구;황광우;이도익
    • IMMUNE NETWORK
    • /
    • 제6권1호
    • /
    • pp.27-32
    • /
    • 2006
  • Background: Chronic inflammation in the brain has known to be associated with the development of a various neurological diseases including dementia. In general, the characteristic of neuro-inflammation is the activated microglia over the brain where the pathogenesis occurs. Pro-inflammatory repertoires, interleukin-1${\beta}$ (IL-1${\beta}$) and nitric oxide (NO), are the main causes of neuro-degenerative disease, particularly in Alzheimer's disease (AD) which is caused by neuronal destruction. Those pro-inflammatory repertoires may lead the brain to chronic inflammatory status, and thus we hypothesized that chronic inflammation would be inhibited when pro-inflammatory repertoires are to be well controlled by inactivating the signal transduction associated with inflammation. Methods: In the present study, we examined whether biphenyl dimethyl dicarboxylate (DDB), an active compound from Schizandra chinensis Baillon, inhibits the NO production by a direct method using Griess reagent and by RT-PCR in the gene expression of inducible nitric oxide synthase (iNOS) and IL-1${\beta}$. Western blots were also used for the analysis of NF-${\kappa}B$ and I${\kappa}B$. Results: In the study, we found that DDB effectively inhibited IL-1${\beta}$ as well as NO production in BV-2 microglial cell, and the translocation of NF-${\kappa}B$ was comparably inhibited in the presence of DDB comparing those to the positive control, lipopolysaccharide. Conclusion: The data suggested that the DDB from Schizandra chinensis Baillon may play an effective role in inhibiting the pro-inflammatory repertoires which may cause neurodegeneration and the results imply that the compound suppresses a cue signal of the microglial activation which can induce the brain pathogenesis such as Alzheimer's disease.

공복혈당수치와 운동유발전위의 상관관계에 대한 후향적 분석 : 중추운동신경과 말초운동신경의 비교 (A Retrospective Study on the Correlation between Fasting Blood Sugar and Motor Evoked Potentials : Comparison between Central and Peripheral Motor Nerve)

  • 나병조;박성욱;정우상;문상관;박정미;고창남;조기호;김영석;배형섭;홍진우
    • 대한한방내과학회지
    • /
    • 제28권3호
    • /
    • pp.434-441
    • /
    • 2007
  • Objectives : Peripheral neurodegeneration occurs in diabetes mellitus (DM), both sensory and motor nerve. but we don't know exactly if DM affects central nerve pathway for all studies. Electrophysiologic study is one of the most important diagnostic tools for diabetic neuropathy. Electroneurography and electromyography are usually used. but evoked potentials (EP) is more sensitive to small nerve fiber damages and useful for central nerve evaluation in addition to peripheral nerves. Most diabetic neuropathy studies by EP have been performed with somatosensory evoked potentials (SSEP). In contrast, the objective of this study is to investigate if DM targets central motor neurons by assessing the relation between fasting blood sugar (FBS) and motor evoked potentials (MEP) latency. Methods : We inspected the medical records of 34 patients who had MEP tests during admitting days. The latency from cervical portion to abductor pollicis brevis was used as peripheral motor conduction time (PMCT). and the latency from vertex to cervical portion was used as central motor conduction time (CMCT). Then, they were correlated to FBS using correlation analysis. Results : There was a significant linear relation between FBS and PMCT (Pearson's correlation coefficient r=0.487, p<0.01), but a poor linear relation between FBS and CMCT (Pearson's correlation coefficient r=-0.l97. p>0.05). Conclusions : This study suggests that prolonged latencies of MEP in DM may be due to peripheral neuropathy rather than dysfunction of central motor pathway. therefore the clinical use of MEP to diabetic neuropathy has to be divided segmentally.

  • PDF

Neuroprotective Effects of Ginsenoside Rg3 against 24-OH-cholesterol-induced Cytotoxicity in Cortical Neurons

  • Roh, Yoon-Seok;Kim, Hyoung-Bae;Kang, Chang-Won;Kim, Bum-Seok;Nah, Seung-Yeol;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • 제34권3호
    • /
    • pp.246-253
    • /
    • 2010
  • Ginsenoside $Rg_3$ ($Rg_3$), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents in vitro and antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. In the present study, we examined the neuroprotective effects of $Rg_3$ on 24-hydroxycholesterol (24-OH-chol)-induced cytotoxicity in vitro. The results showed that $Rg_3$ treatment significantly and dose-dependently inhibited 24-OH-chol-induced cell death in rat cultured cortical neurons, with an $IC_{50}$ value of $28.7{\pm}7.5\;{\mu}m$. Furthermore, the $Rg_3$ treatment not only significantly reduced DNA damage, but also dose-dependently attenuated 24-OH-chol-induced caspase-3 activity. To study the mechanisms underlying the in vitro neuroprotective effects of $Rg_3$ against 25-OH-chol-induced cytotoxicity, we also examined the effect of $Rg_3$ on intracellular $Ca^{2+}$ elevations in cultured neurons and found that $Rg_3$ treatment dose-dependently inhibited increases in intracellular $Ca^{2+}$, with an $IC_{50}$ value of $40.37{\pm}12.88\;{\mu}m$. Additionally, $Rg_3$ treatment dose-dependently inhibited apoptosis with an $IC_{50}$ of $47.3{\pm}14.2\;{\mu}m$. Finally, after confirming the protective effect of $Rg_3$ using a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay, we found that $Rg_3$ is an active component in ginseng-mediated neuroprotection. These results collectively indicate that $Rg_3$-induced neuroprotection against 24-OH-chol in rat cortical neurons might be achieved via inhibition of a 24-OH-chol-mediated $Ca^{2+}$ channel. This is the first report to employ cortical neurons to study the neuroprotective effects of $Rg_3$ against 24-OH-chol. In conclusion, $Rg_3$ was effective for protecting cells against 24-OH-chol-induced cytotoxicity in rat cortical neurons. This protective ability makes $Rg_3$ a promising agent in pathologies implicating neurodegeneration such as apoptosis or neuronal cell death.

Tat-Fused Recombinant Human SAG Prevents Dopaminergic Neurodegeneration in a MPTP-Induced Parkinson's Disease Model

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Ahn, Eun Hee;Jo, Hyo Sang;Kim, Duk-Soo;Cho, Sung-Woo;Han, Kyu Hyung;Park, Jinseu;Eum, Won Sik;Hwang, Hyun Sook;Choi, Soo Young
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.226-233
    • /
    • 2014
  • Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson's disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium ($MPP^+$) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by $MPP^+$ in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.

척수소뇌성 운동실조증 제7형 (Spinocerebellar ataxia 7 (SCA7))

  • 정선용;장석훈;김현주
    • Journal of Genetic Medicine
    • /
    • 제4권1호
    • /
    • pp.22-37
    • /
    • 2007
  • The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by degeneration of spinocerebellar pathways with variable involvement of other neural systems. At present, 27 distinct genetic forms of SCAs are known: SCA1-8, SCA10-21, SCA23, SCA25-28, DRPLA (dentatorubral-pallidoluysian atrophy), and 16q-liked ADCA (autosomal dominant cerebellar ataxia). Epidemiological data about the prevalence of SCAs are restricted to a few studies of isolated geographical regions, and most do not reflect the real occurrence of the disease. In general a prevalence of about 0.3-2 cases per 100,000 people is assumed. As SCA are highly heterogeneous, the prevalence of specific subtypes varies between different ethnic and continental populations. Most recent data suggest that SCA3 is the commonest subtype worldwide; SCA1, SCA2, SCA6, SCA7, and SCA8 have a prevalence of over 2%, and the remaining SCAs are thought to be rare (prevalence <1%). In this review, we highlight and discuss the SCA7. The hallmark of SCA7 is the association of hereditary ataxia and visual loss caused by pigmentary macular degeneration. Visual failure is progressive, bilateral and symmetrical, and leads irreversibly to blindness. This association represents a distinct disease entity classified as autosomal dominant cerebellar ataxia (ADCA) type II by Harding. The disease affectsprimarily the cerebellum and the retina by the moderate to severe neuronal loss and gliosis, but also many other central nervous system structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat in the ATXN7 gene encoding a polyglutamine (polyQ) tract in the corresponding protein, ataxin-7. Normal ATXN7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36->450 CAG repeats. Immunoblott analysis demonstrated that ataxin-7 is widely expressed but that expression levels vary among tissues. Instability of expanded repeats is more pronounced in SCA7 than in other SCA subtypes and can cause substantial lowering of age at onset in successive generations termed ‘anticipation’ so that children may become diseased even before their parents develop symptoms. The strong anticipation in SCA7 and the rarity of contractions should have led to its extinction within a few generations. There is no specific drug therapy for this neurodegenerative disorder. Currently, therapy remains purely symptomatic. Cellular models and SCA7 transgenic mice have been generated which constitute valuable resources for studying the disease mechanism. Understanding the pathogenetic mechanisms of neurodegeneration in SCAs should lead to the identification of potential therapeutic targets and ultimately facilitate drug discovery. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder. Further, we also review the potential therapeutic strategies that are currently being explored in polyglutamine diseases.

  • PDF

뇌 신경조절에서의 식이 폴리페놀 화합물의 역할 (The Roles of Dietary Polyphenols in Brain Neuromodulation)

  • 이혜영;이희섭
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1386-1395
    • /
    • 2018
  • 최근의 연구결과를 통해서 중추 신경계와 위장관은 장-뇌 축을 따라서 양방향의 상호작용이 일어나고 있다는 것이 분명해지고 있다. 전임상 연구로부터 장내 마이크로비오타가 다양한 생리적 기능을 통해서 중추 신경계의 기능을 조절할 수 있음이 밝혀지고 있다. 폴리페놀 화합물은 과일, 채소, 차, 커피, 와인과 같은 식품에 존재하는 식물 유래의 물질로, 항산화, 항염증, 항균, 면역 조절, 항암, 혈관 확장 및 프리바이오틱스와 유사한 효과를 보유하고 있어 식이를 통해 섭취할 경우 건강에 직접적인 효과를 나타낸다. 최근 들어 폴리페놀 화합물이 인지 기능뿐만 아니라 산화적 스트레스 및 염증성 손상에 대해 작용하는 신경 보호에 유익한 효과를 줄 수 있다는 증거가 보고되고 있다. 본 총설에서는 신경 세포 신호 전달 경로의 자극, 신경 염증, 혈관 기능 및 장내 마이크로비옴과의 상호작용에 따른 폴리페놀 화합물의 신경 보호 효과와 관련된 작용 메커니즘에 대한 일반적인 개요를 제시한다. 폴리페놀 화합물의 대사 산물은 혈액-뇌 장벽을 가로 지르는 신경 전달 물질을 이용하고 뇌 혈관 시스템을 조절하여 작용하거나, 간접적으로 장내 마이크로비오타에 작용한다. 또한, 폴리페놀 화합물은 노화 관련 인지 기능 저하 및 신경 퇴행과 같은 신경계 질환을 다양한 생리 기능을 통해 효과적으로 관리할수 있다는 사실이 제시되고 있다. 폴리페놀 화합물은 신경 염증을 감소시키고 기억과 인지 기능을 향상 시키며 장내 마이크로비오타를 조절하는 능력을 지니고 있기 때문에 신경계 질환의 예방 및 치료에 있어 잠재적인 기능성 식품으로 주목 받을 것으로 기대된다.

말초 아밀로이드 베타 원천으로서의 혈소판과 알츠하이머병의 혈액 바이오마커로서의 가능성 (Platelets as a Source of Peripheral Aβ Production and Its Potential as a Blood-based Biomarker for Alzheimer's Disease)

  • 강재선;최윤식
    • 생명과학회지
    • /
    • 제30권12호
    • /
    • pp.1118-1127
    • /
    • 2020
  • 알츠하이머병은 점진적인 신경세포의 손상과 이로 인해 인지기능 장애를 유발하는 질병이다. 이 질환은 현재로서는 치료할 수 있는 질환이 아니고 진행을 멈추게 할 수 있는 방법이 없다. 그러나 초기에 알츠하이머병을 치료하는 것이 가장 효과적이므로 초기 진단은 증상을 관리할 수 있는 가장 좋은 기회를 제공할 수 있다. 알츠하이머병을 진단하기 위한 바이오마커로는 아밀로이드 베타(Aβ), 병적인 타우, 그리고 신경퇴화가 있고, Aβ의 축적, 인산화 타우는 뇌척수액이나 양전자 방출 단층촬영술을 통해 분석할 수 있다. 그러나 뇌척수액의 채취는 매우 침습적이고 양전자 방출 단층촬영술은 전문적인 고가의 장비가 필요하다. 지난 수십년 동안 빠르고 최소한의 침습성을 가진 바이오마커 분석법을 개발하기 위하여 혈액에 기반한 바이오마커 분석 기술이 연구되어 왔다. 그 중 주목할 만 한 발견이 혈장에서 Aβ의 주요 원천으로 혈소판과의 관련성이다. 아밀로이드 베타는 혈액-뇌 장벽을 통과 할 수 있고 정상 상태에서는 뇌와 혈액 간 평형을 이루게 된다. 흥미롭게도, 여러 임상시험 결과 혈장에서 Aβ42/Aβ40 비율이 가벼운 인지장애 질환과 알츠하이머병에서 감소되어 있는 것을 증명하였다. 종합하면, 이러한 최근의 발견들은 침습성을 최소화한 알츠하이머병의 초기 진단 기술을 개발하는 데 이용될 수 있다. 본 총설에서, 저자들은 알츠하이머병의 바이오마커에 대한 최근 연구결과들, 특히 말초에서 Aβ를 생산하는 혈소판의 역할과 혈액 기반 바이오마커로서의 개발 가능성에 대해 고찰하였다.