• Title/Summary/Keyword: neuroblastoma cell

Search Result 261, Processing Time 0.026 seconds

Differential Expression of Protein Kinase C Subtypes during Ginsenoside Rh2-Induced Apoptosis in SK-N-BE(2) and C6Bu-1 Cells

  • Kim, Young-Sook;Jin, Sung-Ha;Lee, You-Hiu;Park, Jong-Dae;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.23 no.5
    • /
    • pp.518-524
    • /
    • 2000
  • We examined the modulation of protein kinase C (PKC) subtypes during apoptosis induced by ginsenoside Rh2 (G-Rh2) in human neuroblastoma SK-N-Bl(2) and rat glioma C6Bu-1 cells. Apoptosis induced by C-Rh2 in both cell lines was confirmed, as indicated by DNA fragmentation and in situ strand breaks, and characteristic morphological changes. During apoptosis induced by G-Rh2 in SK-N-BE(2) cells, PKC subtypes $\alpha$, $\beta$ and $\gamma$ were progressively increased with prolonged treatment, whereas PKC $\delta$ increased transiently at 3 and 6 h and PKC $\varepsilon$ was gradually down-regulated after 6 h following the treatment. On the other hand, PKC subtype $\beta$ markedly increased at 24 h when maximal apoptosis was achieved. In C6Bu-l cells, no significant changes in PKC subtypes $\alpha$, $\gamma$, $\delta$, $\varepsilon$ and $\beta$ were observed during apoptosis induced by G-Rh2. These results suggest the evidence for a possible role of PKC subtype in apoptosis induced by G-Rh2 in SK-N-BE(2) cells but not in C6Bu-1 cells, and raise the possibility that G-Rh2 may induce apoptosis via different pathways interacting with or without PKC in different cell types.

  • PDF

Comparative Study of 12 Herbal Formulae Covered by the National Health Insurance Service in Korea (한방건강보험약 12종의 항산화 활성 및 신경세포 독성 스크리닝 연구)

  • Seo, Ji Eun;Lee, Hanul;Bae, Chang-Hwan;Yoon, Dong Hak;Kim, Hee-Young;Kim, Seungtae
    • Korean Journal of Acupuncture
    • /
    • v.39 no.2
    • /
    • pp.34-42
    • /
    • 2022
  • Objectives : Parkinson's disease (PD) is a neurodegenerative disease caused by dopaminergic neuronal death in the substantia nigra pars compacta. PD is known to be linked with mitochondrial dysfunction and increased oxidative stress. In this study, anti-cytotoxic and anti-oxidative effect of 12 herbal formulae were compared. Methods : According to experts' advice, 12 types of herbal formulae (Gamisoyosan, Galgeuntang, Galgeunhaegitang, Banhabaekchoolcheonmatang, Bojungikgitang, Boheotang, Sihogyejitang, Sihosogantang, Sihocheonggantang, Ojeoksan, Cheongsanggyeontongtang and Palmultang) were selected from 56 types of herbal formulae covered by the National Health Insurance Service in Korea. To detect anti-oxidative effect, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was performed, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to detect anti-cytotoxic effect of 12 herbal formulae using SH-SY5Y human neuroblastoma cells. Results : In DPPH assay, anti-oxidant activity was increased in a dose-dependent manner and half maximal inhibitory concentration was highest in the order of Galgeuntang, Gamisoyosan, Galgeunhaegitang, Ojeoksan, Palmultang, Sihogyejitang, Sihosogantang, Cheongsanggyeontongtang, Sihocheonggantang, Bojungikgitang, Boheotang and Banhabaekchoolcheonmatang. In MTT assay, concentration of 80% cell survival was highest in the order of Sihosogantang, Cheongsanggyeontongtang, Sihocheonggantang, Sihogyejitang, Bojungikgitang, Galgeuntang, Ojeoksan, Boheotang, Palmultang, Galgeunhaegitang, Banhabaekchoolcheonmatang and Gamisoyosan. Formulae with more than 50% DPPH radical scavenging activity at concentrations for 80% cell survival were Sihosogantang, Cheongsanggyeontongtang, Sihogyejitang, Galgeuntang and Sihocheonggantang. Conclusions : Sihosogantang, Cheongsanggyeontongtang, Sihogyejitang, Galgeuntang and Sihocheonggantang extracts can be candidate medicines for PD, but the effect should be validated in PD models.

Effect of 1,2,3,4,6-penta-O-gallolyl-β-ᴅ-glucose on markers of cognitive function in human neuroblastoma SK-N-SH cell line (1,2,3,4,6-Penta-O-gallolyl-β-ᴅ-glucose가 인간 유래 신경모세포주인 SK-N-SH세포의 인지기능 표지자에 미치는 영향)

  • Yoon, Hyeon Seok;Park, So Yeon;Kim, Yoon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.715-721
    • /
    • 2021
  • Cognitive impairment and Alzheimer's disease are serious social problems associated with the rising elderly population in Korea. 1,2,3,4,6-Penta-O-galloyl-β-ᴅ-glucopyranose (PGG) is a gallotannin isolated from medicinal plants such as Rhus chinensis. This study was performed to evaluate the effect of PGG on biomarkers related to cognitive function in human neuroblastoma SK-N-SH cells. Inhibition of acetylcholinesterase (AChE) activity is considered to be one of the main therapeutic strategies. PGG inhibited AChE activity in the test tube as well as in SK-N-SH cells. In addition, PGG induced protein and mRNA expression of brain-derived neurotrophic factor (BDNF), which is a mammalian neurotrophin that plays major roles in the development, maintenance, repair, and survival of neuronal populations. As one of the underlying molecular mechanisms that induce BDNF expression, PGG induced the activation of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII)-cAMP response element binding protein (CREB) pathway. In conclusion, PGG may be an useful material for improving cognitive function.

Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1 (Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상)

  • Lee, Joon-Noh;Yang, Byung-Hwan;Choi, Seung-Hak;Kim, Seok-Hyun;Chai, Young-Gyu;Jung, Kyoung-Hwa;Lee, Jun-Seok;Choi, Kang-Ju;Kim, Young-Suk
    • Korean Journal of Biological Psychiatry
    • /
    • v.12 no.1
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF

Dieckol Attenuates Microglia-mediated Neuronal Cell Death via ERK, Akt and NADPH Oxidase-mediated Pathways

  • Cui, Yanji;Park, Jee-Yun;Wu, Jinji;Lee, Ji Hyung;Yang, Yoon-Sil;Kang, Moon-Seok;Jung, Sung-Cherl;Park, Joo Min;Yoo, Eun-Sook;Kim, Seong-Ho;Ahn Jo, Sangmee;Suk, Kyoungho;Eun, Su-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.219-228
    • /
    • 2015
  • Excessive microglial activation and subsequent neuroinflammation lead to synaptic loss and dysfunction as well as neuronal cell death, which are involved in the pathogenesis and progression of several neurodegenerative diseases. Thus, the regulation of microglial activation has been evaluated as effective therapeutic strategies. Although dieckol (DEK), one of the phlorotannins isolated from marine brown alga Ecklonia cava, has been previously reported to inhibit microglial activation, the molecular mechanism is still unclear. Therefore, we investigated here molecular mechanism of DEK via extracellular signal-regulated kinase (ERK), Akt and nicotinamide adenine dinuclelotide phosphate (NADPH) oxidase-mediated pathways. In addition, the neuroprotective mechanism of DEK was investigated in microglia-mediated neurotoxicity models such as neuron-microglia co-culture and microglial conditioned media system. Our results demonstrated that treatment of anti-oxidant DEK potently suppressed phosphorylation of ERK in lipopolysaccharide (LPS, $1{\mu}g/ml$)-stimulated BV-2 microglia. In addition, DEK markedly attenuated Akt phosphorylation and increased expression of $gp91^{phox}$, which is the catalytic component of NADPH oxidase complex responsible for microglial reactive oxygen species (ROS) generation. Finally, DEK significantly attenuated neuronal cell death that is induced by treatment of microglial conditioned media containing neurotoxic secretary molecules. These neuroprotective effects of DEK were also confirmed in a neuron-microglia co-culture system using enhanced green fluorescent protein (EGFP)-transfected B35 neuroblastoma cell line. Taken together, these results suggest that DEK suppresses excessive microglial activation and microglia-mediated neuronal cell death via downregulation of ERK, Akt and NADPH oxidase-mediated pathways.

Antioxidant Properties and Protective Effects of Inula britannica var. chinensis Regel on Oxidative Stress-induced Neuronal Cell Damage (금불초 추출물의 항산화 효과 및 산화 스트레스에 대한 신경세포 보호작용)

  • Lee, Na-Hyun;Hong, Jung-Il;Kim, Jin-Yung;Chiang, Mae-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.87-92
    • /
    • 2009
  • The antioxidant properties and protective effects of Inula britannica on ${H_2}{O_2}$-induced SH-SY5Y neuroblastoma cell damage were investigated. A series of solvent fractions, including hexane(Fr.H), petroleum ether, chloroform, ethyl acetate(Fr.EA), and water fraction(Fr.W), were prepared from the 70% methanol extracts of Inula britannica. Fr.W had the highest total contents of phenolics and flavonoids, followed by Fr.EA. The antioxidant properties of the fractions were also evaluated by analyzing their scavenging activities on 1,1-diphenyl-2-picrylhydrazyl(DPPH) radicals, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, and nitric oxide. Fr.W showed the strongest activities in all assays. The concentrations of Fr.W that resulted in 50% reductions of the DPPH and ABTS radicals were 20.7 ${\mu}g$/mL and 39.4 ${\mu}g$/mL, respectively. Fr.W showed the weakest cytotoxic activities on the SH-SY5Y cells, whereas it effectively protected ${H_2}{O_2}$-induced cell death, increasing cell survival by 35.0-77.0% at a concentration range of 62.5-250 ${\mu}g$/mL. In this range, Fr.W also significantly decreased intracellular ROS levels by 34-39%. Overall, the antioxidant properties of Inula britannica can contribute to rescuring neuronal cells from oxidative stress-induced cell injury.

Cellular protective effect of Ecklonia cava extract on ultra-fine dust (PM2.5)-induced cytoxicity (초미세먼지(PM2.5)로 유도된 in vitro 세포 독성에 대한 감태(Ecklonia cava) 추출물의 보호 효과)

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Yoo, Seul Ki;Han, Hye Ju;Shin, Eun Jin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.503-508
    • /
    • 2019
  • To evaluate the protective effect of Ecklonia cava on ultra-fine dust ($PM_{2.5}$)-induced cytotoxicity, we investigated the in vitro antioxidant activity and cell viability after exposure to $PM_{2.5}$. E. cava was extracted using water and 80% ethanol, and antioxidant activity was determined using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)/2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and lipid peroxidation inhibition assays. The 80% ethanol extract showed relatively higher antioxidant activity than the water extract. The cell protective effects were determined by measuring the intracellular reactive oxygen species (ROS) content and viability of nasal epithelial (RPMI-2650), lung epithelial (A549), and brain neuroblastoma (MC-IXC) cells. Results showed that the 80% ethanol extract inhibited ROS production more than the water extract. In contrast, both extracts showed similar effects on cell viability in the $PM_{2.5}$-induced cell death assay. Thus, Ecklonia cava may act as an effective resource for preventing $PM_{2.5}$-induced cytotoxicity in nasal, lung, and brain cells.

Neuroprotective and Anti-oxidant Effects of Gastrodiae Rhizoma Extracts against Hydrogen Peroxide-induced Cytotoxicity in SH-SY5Y Cells (산화적 스트레스에 대한 천마 추출물의 신경세포 보호 및 항산화 효과)

  • Kang Beom, Kwon;Ha Rim, Kim;Ye Seul, Kim;Eun Hee, Park;Han Byeol, Choi;Do Gon, Ryu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.6
    • /
    • pp.209-212
    • /
    • 2022
  • We recently reported that Gastrodia elata extracts (GEE) had an effects to protect against lipopolysaccharide-induced cognitive impairment in vivo model. In this study, we investigated the neuroprotective effects and the mechanism of action of GEE in hydrogen peroxide (H2O2)-induced cell death of SH-SY5Y human neuroblastoma cell. The SH-SY5Y cells were divided into five groups, including control(non-treated group), 100 μM H2O2, 100, 200, 500 ㎍/㎖ GEE+ 100 μM H2O2 groups. Pre- and co-treatment with GEE prevented cell death induced by 100 μM H2O2 for 24 h in SH-SY5Y cells. Our findings also showed that anti-oxidants enzymes (Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase) were up-regulated by 100 μM H2O2. But GEE suppressed H2O2-induced anti-oxidants enzymes decrease in a dose-dependent manner. Treatment with GEE also inhibited phosphorylation of eukaryotic initiation factor-2α (eIF-2α) and p38 by H2O2. Taken together, the neuroprotective effects of GEE in terms of recovery of antioxidant enzymes expression, down-regulation of eIF-2α and p38 phosphorylation, and inhibition of cell death are associated with reduced oxidative stress in SH-SY5Y cells.

Effects of the cis-Dichlorodiammineplatinum on the Fine Structures of the Interalveolar Septum in the Mouse (cis-Dichlorodiammineplatinum (II) 이 생쥐 폐포간중격의 미세구조에 미치는 영향)

  • Baik, Tai-Kyeoung;Kwon, Ik-Seung;Kim, Won-Kyu;Baik, Doo-Jin;Chung, Ho-Sam;Lee, Kyu-Sik
    • Applied Microscopy
    • /
    • v.23 no.1
    • /
    • pp.35-55
    • /
    • 1993
  • cis-Dichlorodiammineplatinum (II) (cis-Platin), a metallic compound, has widely been used as an effective anticancer chemotherapeutic agent. The precise mechanism of action of this agent is still unknown, but it is postulated that cis-Platin may act on the cancer cell like bifunctional alkylating agents. Although this agent is very beneficial to the patients with cervical cancer, germinoma of testis, neuroblastoma and others, it may also damage to the normal cell so that many side effects; severe hemorrhagic enterocolitis, bone marrow depression, renal damage and liver damage will develope. This experiment has been undertaken to pursue the cytotoxic effects of the cis-Platin on the ultrastructures of the interalveolar septum in the mouse lung. A total of 55 healthy male mice of ICR strain were used as experimental animals and divided into 5 mice of normal control group and 50 mice of cis-Platin treated group. The mice of cis-Platin treated group were sacrificed by carotid exsanguination at 6, 12, 24 hours, 3 days and 7 days after intraperitoneal injection of 6.0 mg of cis-Platin ($Abiplatin^R$ Abic Co. Ltd.) per kg of mouse body weight. The specimen obtained from the lower lobe of left lung were sliced into $1mm^3$ and prefixed with 2% glutaraldehyde -2.5% paraformaldehyde solution prepared with Millonig's phosphatae buffer solution (pH 7.4) at $4^{\circ}C$ for 3-4 hours. After postfixation with 1% osmium tetroxide solution all specimens were embedded in Epon 812. Ultrathin sections about $600-800{\AA}$ in thickness were stained with uranyl acetate and lead citrate and observed with Hitachi-600 electron microscope. The results obtained were as follows: 1. Local swellings with increase of electron density and number of pinocytic vesicles in the cytoplasms of the type I pneumocyte and endothelial cell of the blood air barrier in interalveolar septum of cis-platin treated mice were observed. 2. Cisternae of rough endoplasmic reticulum were dilated and sacculated in association with detachment of membrane bound ribosomes of the type II pneumocyte in interalveolar septum of cis-Platin treated mice. 3. Swollon mitochondria with uneven electron density of their matrix were observed in the type II pneumocyte of interalveolar septum in the cis-Platin treated mice. 4. The lamellae of lammelar bodies in type II pneumocyte of interalveolar septum in cis-Platin treated mice were devoided or transformed into homogeneous electron dense material. It is consequently suggested that cis-Platin would induce the cellular edema of type I pneumocyte and endothelial cell, and degenerative changes of cytoplasmic organelles of the type II pneumocyte in the interalveolar septum of the mouse lung.

  • PDF

Protective Effect of Wheat Bran Extract against β-Amyloid-induced Cell Death and Memory Impairment (베타아밀로이드로 유도된 신경세포 사멸과 기억력 손상에 대한 밀기울추출물의 보호효과)

  • Lee, Chan;Park, Gyu-Hwan;Lee, Jong-Won;Jang, Jung-Hee
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.67-75
    • /
    • 2015
  • Objectives : The aim of this study is to examine the neuroprotective effect of wheat bran extract (WBE) against ${\beta}$-amyloid ($A{\beta}$)-induced apoptotic cell death in SH-SY5Y human neuroblastoma cells and memory impairment in triple transgenic animal model's of Alzheimer's disease (3xTg AD mice). Methods : In SH-SY5Y cells, MTT assay and TUNEL staining were conducted to evaluate the protective effect of WBE against $A{\beta}_{25-35}$-induced neurotoxicity and apoptosis. Alterations in mitochondrial transmembrane potential (MMP), expression of proapoptotic Bax and antiapoptotic Bcl-2 proteins, cleavage of PARP, and brain-derived neurotrophic factor (BDNF) levels were analyzed to elucidate the neuroprotective mechanism of WBE. To further investigate the memory enhancing effect of WBE, Morris water maze test was performed in 3xTg AD mice. Results : In SH-SY5Y cells, WBE protected against $A{\beta}_{25-35}$-caused cytotoxicity and apoptosis as shown by the restoration of cell viability in MTT assay and inhibition of DNA fragmentation in TUNEL staining. $A{\beta}_{25-35}$-induced apoptotic signals such as dissipation of MMP, decreased Bcl-2/Bax ratio, and cleavage of PARP were suppressed by WBE. Moreover, WBE up-regulated the protein levels of BDNF, which seemed to be mediated by activation of cAMP response element-binding protein (CREB). In 3xTg AD mice, oral administration of WBE attenuated learning and memory deficit as verified by reduced mean escape latency in water maze test. Conclusions : WBE protects neuronal cells from $A{\beta}_{25-35}$-induced apoptotic cell death and restores learning and memory impairments in 3xTg AD mice. These findings suggest that WBE exhibit neuroprotective potential for the management of AD.