• Title/Summary/Keyword: neurobiology

Search Result 233, Processing Time 0.025 seconds

Basic Neurobiological Aspect of Dream (꿈의 신경생물학적 측면의 기초)

  • Kim, Seog-Ju
    • Sleep Medicine and Psychophysiology
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2009
  • This review aims to introduce the basic neurobiological aspects of dream. There have been long debates on whether the neurobiology of rapid eye movement (REM) sleep is identical to that of dream. However, many theories on dream are based on the findings of REM sleep. Bizarre cognition and intense emotion in dream have been suggested to derive from physiological (e.g. desynchronized gamma oscillation and postsynaptic inhibition), chemical (e.g. decreased noradrenalin and serotonin, increased acetylcholine and modulation of dopamine), anatomical (e.g. deactivation of dorsolateral prefrontal cortex and activation of limbic and paralimbic areas) change in REM sleep. In addition, dream has been suggested to play its neurobiological roles. Processing of negative emotion may be one of the functions of dream. Dream is also supposed to consolidate memory, especially semantic memory. Despite a number of hypotheses and debates, the neurobiological mechanism of dream generation has not been concluded.

  • PDF

The Role of Intracellular Signaling Pathways in the Neurobiology of the Depressive Disorder (우울장애의 신경생물학적 기전으로서 세포 내 신호전달계의 역할)

  • Kim, Se-Hyun
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • Major depressive disorder is characterized by cellular and molecular alterations resulting in the depressive behavioral phenotypes. Preclinical and clinical studies have demonstrated the deficits, including cell atrophy and loss, in limbic and cortical regions of patients with depression, which is restored with antidepressants by reestablishing proper molecular changes. These findings have implicated the involvement of relevant intracellular signaling pathways in the pathogenetic and therapeutic mechanisms of depressive disorders. This review summarizes the current knowledge of the signal transduction mechanisms related to depressive disorders, including cyclic-AMP, mitogen-activated protein kinase, Akt, and protein translation initiation signaling cascades. Understanding molecular components of signaling pathways regulating neurobiology of depressive disorders may provide the novel targets for the development of more efficacious treatment modalities.

Biomimetic control for redundant and high degree of freedom limb systems: neurobiological modularity

  • Giszter, Simon F.;Hart, Corey B.
    • Smart Structures and Systems
    • /
    • v.7 no.3
    • /
    • pp.169-184
    • /
    • 2011
  • We review the current understanding of modularity in biological motor control and its forms, and then relate this modularity to proposed modular control structures for biomimetic robots. We note the features that are different between the robotic and the biological 'designs' with features which have evolved by natural selection, and note those aspects of biology which may be counter-intuitive or unique to the biological controls as we currently understand them. Biological modularity can be divided into kinematic modularity comprised of strokes and cycles: primitives approximating a range of optimization criteria, and execution modularity comprised of kinetic motor primitives: muscle synergies recruited by premotor drives which are most often pulsatile, and which have the biomechanical effect of instantiating a visco-elastic force-field in the limb. The relations of these identified biological elements to kinematic and force-level motor primitives employed in robot control formulations are discussed.

In Vivo Quantitative Analysis of PKA Subunit Interaction and cAMP Level by Dual Color Fluorescence Cross Correlation Spectroscopy

  • Park, Hyungju;Pack, Changi;Kinjo, Masataka;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.87-92
    • /
    • 2008
  • We employed dual color Fluorescence Cross Correlation Spectroscopy (FCCS) to measure the interaction between PKA regulatory (RII) and catalytic subunits (CAT) in living cells. Elevation of intracellular cAMP with forskolin decreased the cross-correlation amplitude between RFP-fused RII (RII -mRFP) and GFP-fused CAT (CAT-EGFP) by 50%, indicating that cAMP elevation leads to dissociation of RII-CAT complexes. Moreover, diffusion coefficient analysis showed that the diffusion rate of CAT-EGFP was significantly increased, suggesting that the decreased RII-CAT association caused by cAMP generated free CAT subunits. Our study demonstrates that in vivo FCCS measurements and their quantitative analysis permit one not only to directly quantify protein-protein interactions but also to estimate changes in the intracellular cAMP concentration.

The Neurobiology and Psychophysiology of Dreaming (꿈의 신경생물학적, 정신생리적적 기초)

  • Chung, Sang-Keun
    • Sleep Medicine and Psychophysiology
    • /
    • v.8 no.2
    • /
    • pp.83-89
    • /
    • 2001
  • In all ages and countries, dreaming has always been a topic that has interested people. Throughout history, theories about dreaming have been heavily dependent on concurrent theories in related domains. Many researchers have claimed that dreaming occurs during REM and NREM sleep and have rejected the strict association between REM sleep mechanisms and dreams. Although dreams may occur in both REM and NREM periods, they are likely to be produced by different mechanisms during REM and NREM sleep. All physicians managing dreaming-related problems in clinical practice need to understand the multidimensional aspects of dreaming. Therefore, I have reviewed the literature on mechanisms generating and the meaning of dreaming in the neurobiological and psychophysiological perspectives.

  • PDF

Neurobiological Basis of Anxiety Related Disorders (불안 관련 장애의 신경생물학적 이해)

  • Kim, Kyung-Min;Kim, Min-Kyoung;Lee, Sang-Hyuk
    • Korean Journal of Biological Psychiatry
    • /
    • v.21 no.4
    • /
    • pp.128-140
    • /
    • 2014
  • Anxiety disorders are characterized by dysregulation of neuroendocrine, neurotransmitter and neuroanatomical functions. Substantial advances in research method offered new insights into the neurobiologic mechanisms in anxiety disorders. Advances in molecular biology have enabled illumination of hormone and neurotransmitters that have important roles in anxiety. The neuroanatomic circuits related to anxiety are also being elucidated by improvements in neuroimaging technology such as structural and functional magnetic resonance imaging. This article reviews the research data in relation to the neurobiology underlying fear and pathologic anxiety and discusses their implications for development of biological treatments for anxiety disorders.