Browse > Article

In Vivo Quantitative Analysis of PKA Subunit Interaction and cAMP Level by Dual Color Fluorescence Cross Correlation Spectroscopy  

Park, Hyungju (Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University)
Pack, Changi (Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University)
Kinjo, Masataka (Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University)
Kaang, Bong-Kiun (Neurobiology Laboratory, Department of Biological Sciences, College of Natural Sciences, Seoul National University)
Abstract
We employed dual color Fluorescence Cross Correlation Spectroscopy (FCCS) to measure the interaction between PKA regulatory (RII) and catalytic subunits (CAT) in living cells. Elevation of intracellular cAMP with forskolin decreased the cross-correlation amplitude between RFP-fused RII (RII -mRFP) and GFP-fused CAT (CAT-EGFP) by 50%, indicating that cAMP elevation leads to dissociation of RII-CAT complexes. Moreover, diffusion coefficient analysis showed that the diffusion rate of CAT-EGFP was significantly increased, suggesting that the decreased RII-CAT association caused by cAMP generated free CAT subunits. Our study demonstrates that in vivo FCCS measurements and their quantitative analysis permit one not only to directly quantify protein-protein interactions but also to estimate changes in the intracellular cAMP concentration.
Keywords
cyclic AMP; fluorescence cross-correlation spectroscopy; PKA subunits;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Arnsten, A.F., Ramos, B.P., Birnbaum, S.G., and Taylor, J.R. (2005). Protein kinase A as a therapeutic target for memory disorders: rationale and challenges. Trends Mol. Med. 11, 121-128   DOI   ScienceOn
2 Park, H., Lee, J.A., Lee, C., Kim, M.J., Chang, D.J., Kim, H., Lee, S.H., Lee, Y.S., and Kaang, B.K. (2005). An Aplysia type 4 phosphodiesterase homolog localizes at the presynaptic terminals of Aplysia neuron and regulates synaptic facilitation. J. Neurosci.25, 9037-9045   DOI   ScienceOn
3 Zheng, J. (2006). Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. Methods Mol. Biol. 337, 65- 77
4 Zippin, J.H., Farrell, J., Huron, D., Kamenetsky, M., Hess, K.C., Fischman, D.A., Levin, L.R., and Buck, J. (2004). Bicarbonateresponsive "soluble" adenylyl cyclase defines a nuclear cAMP microdomain. J. Cell Biol. 164, 527-534   DOI   ScienceOn
5 Xu, X., Brzostowski, J.A., and Jin, T. (2006). Using quantitative fluorescence microscopy and FRET imaging to measure spatiotemporal signaling events in single living cells. Methods Mol. Biol.346, 281-296
6 Chen, H., Puhl, H.L., 3rd, Koushik, S.V., Vogel, S.S., and Ikeda, S.R. (2006). Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J.91, L39-41   DOI   ScienceOn
7 Brock, R., Vamosi, G., Vereb, G., and Jovin, T.M. (1999). Rapid characterization of green fluorescent protein fusion proteins on the molecular and cellular level by fluorescence correlation microscopy. Proc. Natl. Acad. Sci. USA 96, 10123-10128
8 Wallrabe, H., Chen, Y., Periasamy, A., and Barroso, M. (2006). Issues in confocal microscopy for quantitative FRET analysis. Microsc. Res. Tech.69, 196-206   DOI   ScienceOn
9 Saito, K., Wada, I., Tamura, M., and Kinjo, M. (2004). Direct detection of caspase-3 activation in single live cells by crosscorrelation analysis. Biochem. Biophys. Res. Commun. 324, 849-854   DOI   ScienceOn
10 Zaccolo, M., and Pozzan, T. (2002). Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295, 1711-1715   DOI   ScienceOn
11 Zhuo, M. (2007). A synaptic model for pain: long-term potentiation in the anterior cingulate cortex. Mol. Cells 23, 259-271
12 Zaccolo, M., Cesetti, T., Di Benedetto, G., Mongillo, M., Lissandron, V., Terrin, A., and Zamparo, I. (2005). Imaging the cAMPdependent signal transduction pathway. Biochem. Soc. Trans. 33, 1323-1326   DOI   ScienceOn
13 Byrne, J.H., and Kandel, E.R. (1996). Presynaptic facilitation revisited: state and time dependence. J. Neurosci. 16, 425-435   DOI
14 Colledge, M., and Scott, J.D. (1999). AKAPs: from structure to function. Trends Cell Biol. 9, 216-221   DOI   ScienceOn
15 Ponsioen, B., Zhao, J., Riedl, J., Zwartkruis, F., van der Krogt, G., Zaccolo, M., Moolenaar, W.H., Bos, J. L., and Jalink, K. (2004). Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep. 5, 1176-1180   DOI   ScienceOn
16 Kogure, T., Karasawa, S., Araki, T., Saito, K., Kinjo, M., and Miyawaki, A. (2006). A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat. Biotechnol. 24, 577- 581   DOI   ScienceOn
17 van der Wal, J., Habets, R., Varnai, P., Balla, T., and Jalink, K. (2001). Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J. Biol. Chem 276, 15337-15344   DOI   ScienceOn
18 Bacia, K., Kim, S.A., and Schwille, P. (2006). Fluorescence crosscorrelation spectroscopy in living cells. Nat. Methods 3, 83-89   DOI   ScienceOn
19 Kim, S.A., Heinze, K.G., Bacia, K., Waxham, M.N., and Schwille, P. (2005). Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys. J. 88, 4319-4336   DOI   ScienceOn
20 Mikuni, S., Tamura, M., and Kinjo, M. (2007). Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy. FEBS Lett. 581, 389-393   DOI   ScienceOn
21 Kim, S.A., and Schwille, P. (2003). Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience. Curr. Opin. Neurobiol. 13, 583-590   DOI   ScienceOn
22 Gu, Y., Di, W.L., Kelsell, D.P., and Zicha, D. (2004). Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J. Microsc.215, 162-173   DOI   ScienceOn
23 DiPilato, L.M., Cheng, X., and Zhang, J. (2004). Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc. Natl. Acad. Sci. USA 101, 16513-16518
24 Takahashi, Y., Sawada, R., Ishibashi, K., Mikuni, S., and Kinjo, M. (2005). Analysis of cellular functions by multipoint fluorescence correlation spectroscopy. Curr. Pharm. Biotechnol. 6, 159-165   DOI   ScienceOn
25 Hoppe, A., Christensen, K., and Swanson, J.A. (2002). Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83, 3652-3664   DOI   ScienceOn
26 Pack, C., Saito, K., Tamura, M., and Kinjo, M. (2006). Microenvironment and effect of energy depletion in the nucleus analyzed by mobility of multiple oligomeric EGFPs. Biophys. J. 91, 3921- 3936   DOI   ScienceOn
27 Almholt, K., Tullin, S., Skyggebjerg, O., Scudder, K., Thastrup, O., and Terry, R. (2004). Changes in intracellular cAMP reported by a Redistribution assay using a cAMP-dependent protein kinasegreen fluorescent protein chimera. Cell Signal. 16, 907-920   DOI   ScienceOn
28 Heinze, K.G., Rarbach, M., Jahnz, M., and Schwille, P. (2002). Two-photon fluorescence coincidence analysis: rapid measurements of enzyme kinetics. Biophys. J. 83, 1671-1681   DOI   ScienceOn