• 제목/요약/키워드: neural-net control

검색결과 107건 처리시간 0.028초

철강 생산 공정에서 Soft Computing 기술을 이용한 온도하락 예측 모형의 비교 연구 (Comparative Analysis of Models used to Predict the Temperature Decreases in the Steel Making Process using Soft Computing Techniques)

  • 김종한;성덕현
    • 제어로봇시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.173-178
    • /
    • 2007
  • This paper is to establish an appropriate model for predicting the temperature decreases in the batch transferred from the refining process to the caster in steel-making companies. Mathematical modeling of the temperature decreases between the processes is difficult, since the reaction mechanism by which the temperature changes in a molten steel batch is dynamic, uncertain and complex. Three soft computing techniques are examined using the same data, namely the multiple regression, fuzzy regression, and neural net (NN) models. To compare the accuracy of these three models, a limited number of input variables are selected from those variables significantly affecting the temperature decrease. The results show that the difference in accuracy between the three models is not statistically significant. Nonetheless, the NN model is recommended because of its adaptive ability and robustness. The method presented in this paper allows the temperature decrease to be predicted without requiring any precise metallurgical knowledge.

미활용 열에너지를 이용한 바이너리 발전과 신경망 제어 (Binary Power plant using unused thermal energy and Neural Network Controllers)

  • 한건영;박성대
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1302-1309
    • /
    • 2021
  • 최근, 정부는 경기침체 극복에 대응하고 구조적 변환에 따른 국제활동을 주도하기 위한 국가발전 전략으로 "한국판 뉴딜 종합계획"을 도입하였다. 한국판 뉴딜에서 에너지와 관련된 '그린뉴딜'은 배출 가스 제로화를 목표로 하고 저탄소 녹색 경제로의 전환을 가속화하는 것이며, 이를 위해 정부는 재생에너지 사용 확대를 촉진한다는 계획이다. 본 논문에서는 저탄소 녹색 경제로의 전환을 촉진하기 위해 미활용 저온 열에너지를 활용하는 바이너리 발전과 실제 발전환경에서 무인 자동운전을 통해 저 비용으로 유지관리가 가능한 신경망 기반 제어시스템에 대해 검토한다. 이러한 바이너리 발전의 실현은 태양광, 풍력 등과 더불어 재생에너지의 도입을 가속화 할 것으로 기대된다.

미이용 열에너지를 이용한 소형 바이너리 발전과 신경망 제어기 (Compact Binary Power plant using unused thermal energy and Neural Network Controllers)

  • 한건영;정석찬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.557-560
    • /
    • 2021
  • 최근 코로나 19 사태로 인한 경기침체 극복에 대응하고 구조적 변환에 따른 국제활동을 주도하기 위한 국가 발전 전략으로 "한국판 뉴딜 종합계획"을 도입하였다. 이중 에너지와 관련된 '그린뉴딜'은 배출 가스 제로화를 목표로 하고 저탄소 녹색 경제로의 전환을 가속화하는 것이며, 이를 위해 정부는 재생에너지 사용확대를 촉진한다는 계획이다. 본 논문에서는 저탄소 녹색 경제로의 전환을 촉진하기 위해 미이용의 열에너지를 활용하는 소형 바이너리 발전과 신경망 활용한 제어시스템에 대해 검토한다. 이러한 바이너리 발전은 태양광, 풍력 등과 더불어 재생에너지의 도입을 가속화 할 것으로 기대된다.

  • PDF

A Hybrid Optimized Deep Learning Techniques for Analyzing Mammograms

  • Bandaru, Satish Babu;Deivarajan, Natarajasivan;Gatram, Rama Mohan Babu
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.73-82
    • /
    • 2022
  • Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.

컬러 정보를 이용한 신경 진동망 기반 얼굴추적 방법 (Face Tracking Method based on Neural Oscillatory Network Using Color Information)

  • 황용원;오상록;유범재;이지용;박민용;정문호
    • 전자공학회논문지SC
    • /
    • 제48권2호
    • /
    • pp.40-46
    • /
    • 2011
  • 본 논문은 출입통제시스템이나 사용자인증이 필요한 통제시스템 등에 적용될 수 있는 신경 진동자(Neural Oscillators)를 이용한 실시간 얼굴검출 및 추적에 필요한 새로운 알고리즘을 제안한다. 신경 진동자(Neural Oscillators)는 생물학적 뉴런의 동작원리를 모방한 것으로서 뉴런의 활성과 비활성의 주기적인 반복동작 특성을 모델링 한 인공신경모델이다. 본 논문에서 제안한 시스템은 크게 두 단계의 처리과정을 가진다. 첫 번째 단계는 얼굴검출 과정인데, 우선 비용이 저렴한 Webcam을 이용하여 실시간 전달되는 RGB24bit 컬러 영상을 획득, LEGION(Locally Excitatory Globally Inhibitory) 알고리즘을 이용하여 분할과정을 거쳐 얼굴영역을 검출한다. 두 번째 단계는 검출된 얼굴영역에서 이웃뉴런들로부터 연결강도가 가장 큰 리더뉴런(Max Leader Neuron)을 찾아 얼굴을 추적하는 방법으로 스케일 문제해결 과 안정된 새로운 얼굴 추적 방법을 제안한다.

MONITORING SEVERE ACCIDENTS USING AI TECHNIQUES

  • No, Young-Gyu;Kim, Ju-Hyun;Na, Man-Gyun;Lim, Dong-Hyuk;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.393-404
    • /
    • 2012
  • After the Fukushima nuclear accident in 2011, there has been increasing concern regarding severe accidents in nuclear facilities. Severe accident scenarios are difficult for operators to monitor and identify. Therefore, accurate prediction of a severe accident is important in order to manage it appropriately in the unfavorable conditions. In this study, artificial intelligence (AI) techniques, such as support vector classification (SVC), probabilistic neural network (PNN), group method of data handling (GMDH), and fuzzy neural network (FNN), were used to monitor the major transient scenarios of a severe accident caused by three different initiating events, the hot-leg loss of coolant accident (LOCA), the cold-leg LOCA, and the steam generator tube rupture in pressurized water reactors (PWRs). The SVC and PNN models were used for the event classification. The GMDH and FNN models were employed to accurately predict the important timing representing severe accident scenarios. In addition, in order to verify the proposed algorithm, data from a number of numerical simulations were required in order to train the AI techniques due to the shortage of real LOCA data. The data was acquired by performing simulations using the MAAP4 code. The prediction accuracy of the three types of initiating events was sufficiently high to predict severe accident scenarios. Therefore, the AI techniques can be applied successfully in the identification and monitoring of severe accident scenarios in real PWRs.

Radionuclide identification based on energy-weighted algorithm and machine learning applied to a multi-array plastic scintillator

  • Hyun Cheol Lee ;Bon Tack Koo ;Ju Young Jeon ;Bo-Wi Cheon ;Do Hyeon Yoo ;Heejun Chung;Chul Hee Min
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3907-3912
    • /
    • 2023
  • Radiation portal monitors (RPMs) installed at airports and harbors to prevent illicit trafficking of radioactive materials generally use large plastic scintillators. However, their energy resolution is poor and radionuclide identification is nearly unfeasible. In this study, to improve isotope identification, a RPM system based on a multi-array plastic scintillator and convolutional neural network (CNN) was evaluated by measuring the spectra of radioactive sources. A multi-array plastic scintillator comprising an assembly of 14 hexagonal scintillators was fabricated within an area of 50 × 100 cm2. The energy spectra of 137Cs, 60Co, 226Ra, and 4K (KCl) were measured at speeds of 10-30 km/h, respectively, and an energy-weighted algorithm was applied. For the CNN, 700 and 300 spectral images were used as training and testing images, respectively. Compared to the conventional plastic scintillator, the multi-arrayed detector showed a high collection probability of the optical photons generated inside. A Compton maximum peak was observed for four moving radiation sources, and the CNN-based classification results showed that at least 70% was discriminated. Under the speed condition, the spectral fluctuations were higher than those under dwelling condition. However, the machine learning results demonstrated that a considerably high level of nuclide discrimination was possible under source movement conditions.

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

진화연산을 이용한 동적 귀환 신경망의 구조 저차원화 (Structure Pruning of Dynamic Recurrent Neural Networks Based on Evolutionary Computations)

  • 김대준;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.65-73
    • /
    • 1997
  • 본 논문에서는 진화연산을 이용하여 동적 귀환 신경망의 구조를 저차원화하는 방법을 제안한다. 일반적으로 진화연산을 개체군을 이용한 탐색 방법으로서 신경회로망의 여러 가지 다른 성질을 동시에 최적화할 필요가 있을 때 유용한 방법이다. 본 연구에서는 동적 귀환 신경망의 구조를 조차원화하기 위하여 진화 프로그래밍으로 신경망의 구조를 탐색하고, 진화전략으로 신경망의 연결강도를 학습시킴으로서 전체적인 구조를 저차원화하였다.신경망의 중간층 노드의 추가/삭제는 돌연변이 확률에 의하여 결정한다. 노드를 삭제할 경우에는 입력 연결강도의 총합이 가장 작은 노드를 삭제하고, 노드를 추가할 경우에는 미리 지정한 확률함스에 따라 노드를 추가한다. 그리고 추가된 노드와 다른 노드와의 연결방법은 서로 영향을 미칠 수 있는 모든 연결강도 중에서 확률적으로 선택하여 연결하였다. 마지막으로 제안한 저차원화 동적 귀환 신경망이 완전 연결된 신경망보다 더 좋은 성능을 얻을 수 있음을 예제로서 본 논문에서는 도립진자의 안정화 및 제어와 로봇 매니퓰레이터의 비주얼 서보잉에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인한다.

  • PDF

Artificial neural network for predicting nuclear power plant dynamic behaviors

  • El-Sefy, M.;Yosri, A.;El-Dakhakhni, W.;Nagasaki, S.;Wiebe, L.
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3275-3285
    • /
    • 2021
  • A Nuclear Power Plant (NPP) is a complex dynamic system-of-systems with highly nonlinear behaviors. In order to control the plant operation under both normal and abnormal conditions, the different systems in NPPs (e.g., the reactor core components, primary and secondary coolant systems) are usually monitored continuously, resulting in very large amounts of data. This situation makes it possible to integrate relevant qualitative and quantitative knowledge with artificial intelligence techniques to provide faster and more accurate behavior predictions, leading to more rapid decisions, based on actual NPP operation data. Data-driven models (DDM) rely on artificial intelligence to learn autonomously based on patterns in data, and they represent alternatives to physics-based models that typically require significant computational resources and might not fully represent the actual operation conditions of an NPP. In this study, a feed-forward backpropagation artificial neural network (ANN) model was trained to simulate the interaction between the reactor core and the primary and secondary coolant systems in a pressurized water reactor. The transients used for model training included perturbations in reactivity, steam valve coefficient, reactor core inlet temperature, and steam generator inlet temperature. Uncertainties of the plant physical parameters and operating conditions were also incorporated in these transients. Eight training functions were adopted during the training stage to develop the most efficient network. The developed ANN model predictions were subsequently tested successfully considering different new transients. Overall, through prompt prediction of NPP behavior under different transients, the study aims at demonstrating the potential of artificial intelligence to empower rapid emergency response planning and risk mitigation strategies.