Acknowledgement
This research was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2106073).
References
- P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals, IEEE Trans. Nucl. Sci. 42 (6) (1995) 2190-2202. https://doi.org/10.1109/23.489415
- B.L. Rupert, N.J. Cherepy, B.W. Sturm, R.D. Sanner, S.A. Payne, Bismuth-loaded plastic scintillators for gamma-ray spectroscopy, Europhys. Lett. 97 (2) (2012), 22002.
- D.V. Jordan, B.D. Geelhood, P.L. Reeder, D.L. Stephens, R.A. Craig, J.I. McIntyre, Progress Report on the Advanced Large-Area Plastic Scintillators (ALPS) Project, Pacific Northwest National Laboratory (PNNL), Richland, WA (United States), 2003. PNNL-14283.
- H.C. Lee, H.J. Choi, B.T. Koo, C.I. Choi, C.S. Park, H.S. Kim, C.H. Min, Dynamic radionuclide identification using energy weighted algorithm with commercialized radiation portal monitor based on plastic scintillators, Radiat. Phys. Chem. 170 (2020), 108645.
- H.C. Lee, W.G. Shin, H.J. Park, D.H. Yoo, C.I. Choi, C.S. Park, H.S. Kim, C.H. Min, Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator, Appl. Radiat. Isot. 107 (2016) 160-164. https://doi.org/10.1016/j.apradiso.2015.10.019
- W.G. Shin, H.C. Lee, C.I. Choi, C.S. Park, H.S. Kim, C.H. Min, A Monte Carlo study of an energy-weighted algorithm for radionuclide analysis with a plastic scintillation detector, Appl. Radiat. Isot. 101 (2015) 53-59. https://doi.org/10.1016/j.apradiso.2015.03.014
- H.C. Lee, W. Shin, H.J. Choi, C.I. Choi, C.S. Park, H.S. Kim, C.H. Min, Radioisotope identification using an energy-weighted algorithm with a proof-of-principle radiation portal monitor based on plastic scintillators, Appl. Radiat. Isot. 156 (2020), 109010.
- A.N.S. Institute, American National Standard for Performance Criteria for Spectroscopy-Based Portal Monitors Used in Homeland Security, American National Standards Institute, 2015, p. 46.
- B.T. Koo, H.C. Lee, W.G. Shin, H.J. Park, C.H. Min, Feasibility study for radionuclide identification using multi-array plastic scintillator and energy weighted algorithm of radiation portal monitors: a Monte Carlo study, J. Instrum. 14 (12) (2019), P12015.
- D. Oneata, J. Revaud, J. Verbeek, C. Schmid, Spatio-temporal object detection proposals, in: European Conference on Computer Vision, 2014. Zurich, Switzerland, September 6-12.
- A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, Commun. ACM 60 (6) (2017) 84-90. https://doi.org/10.1145/3065386
- J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic segmentation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.
- J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, Automated design of both the topology and sizing of analog electrical circuits using genetic programming, in: Artificial Intelligence in Design'96, 1996.
- A. Ratner, B. Hancock, J. Dunnmon, R. Goldman, C. Re, Snorkel metal: weak supervision for multi-task learning, in: Proceedings of the Second Workshop on Data Management for End-To-End Machine Learning, 2018.
- T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, 2009.
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278-2324. https://doi.org/10.1109/5.726791
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2016 arXiv preprint arXiv:1603.04467.
- D. Mishkin, N. Sergievskiy, J. Matas, Systematic evaluation of convolution neural network advances on the imagenet, Comput. Vis. Image Underst. 161 (2017) 11-19. https://doi.org/10.1016/j.cviu.2017.05.007
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278-2324. https://doi.org/10.1109/5.726791
- R.H.R. Hahnloser, R. Sarpeshkar, M.A. Mahowald, R.J. Douglas, H.S. Seung, Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit, Nature 405 (6789) (2000) 947-951. https://doi.org/10.1038/35016072
- H. Ide, T. Kurita, Improvement of learning for CNN with ReLU activation by sparse regularization, in: 2017 International Joint Conference on Neural Networks (IJCNN), May 14, 2017.
- T. Fawcett, An introduction to ROC analysis, Pattern recognit. Lett. 27 (8) (2006) 861-874. https://doi.org/10.1016/j.patrec.2005.10.010
- D.M.W. Powers, Evaluation: from Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation, 2020 arXiv preprint arXiv:2010.16061.
- C.J. Van Rijsbergen, The Geometry of Information Retrieval, Cambridge University Press, 2004.