• Title/Summary/Keyword: neural-fuzzy

Search Result 1,531, Processing Time 0.031 seconds

A fuzzy-neural controller design for electric furnace (전기로의 퍼지-신경회로망 제어기 설계)

  • 김진환;허욱열;이봉국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.129-134
    • /
    • 1992
  • Fuzzy theory has shown good control performance for non-linear system that is difficult to be controlled by the conventional controller. Backpropagation neural network can interpolate output without the priori knowledge of its dynamics. In this paper, we proposes a Fuzzy-Neural Controller. The Fuzzy Control by deterministic rule may not be sensitive for uncertain conditions and has a disadvantage of setting the rule by repeatedly experience. To solve such problems, we construct Self organizing Fuzzy-Neural Controller which can reorganize the fuzzy rule according to the state of system. Experimental results show that proposed Fuzzy-Neural Controller has better performance than conventional controller(PID) has especially rising time and overshoot characteristics.

  • PDF

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

Experimental Studies of Neural Compensation Technique for a Fuzzy Controlled Inverted Pendulum System

  • Lee, Geun-Hyeong;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • This article presents the experimental studies of controlling angle and position of the inverted pendulum system using neural network to compensate for errors caused due to fuzzy controller. Although fuzzy control method can deal with nonlinearities of the system, fixed fuzzy rules may not work and result in tracking errors in some cases. First, a nominal Takagi-Sugeno (TS) type fuzzy controller with fixed weights is used for controlling the inverted pendulum system. Then the neural network is added at the reference input to form the reference compensation technique (RCT)control structure. Neural network modifies the input trajectories to improve system performances by updating internal weights in on-line fashion. The back-propagation learning algorithm for neural network is derived and used to update weights. Control hardware of a DSP 6713 board to have real time control is implemented. Experimental results of controlling inverted pendulum system are conducted and performances are compared.

퍼지 학습 규칙을 이용한 퍼지 신경회로망

  • 김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.180-184
    • /
    • 1997
  • This paper presents the fuzzy neural network which utilizes a fuzzified Kohonen learning uses a fuzzy membership value, a function of the iteration, and a intra-membership value instead of a learning rate. The IRIS data set if used to test the fuzzy neural network. The test result shows the performance of the fuzzy neural network depends on k and the vigilance parameter T.

  • PDF

A study on the Fuzzy Recurrent Neural Networks for the image noise elimination filter (영상 잡음 제거 필터를 위한 퍼지 순환 신경망 연구)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.61-70
    • /
    • 2011
  • In this paper, it is realized an image filter for a noise elimination using a recurrent neural networks with fuzzy. The proposed fuzzy neural networks structure is to converge weights and the number of iteration for a certain value by using basically recurrent neural networks structure and is simplified computation and complexity of mathematics by applying the hybrid fuzzy membership function operator. In this paper, the proposed method, the recurrent neural networks applying fuzzy which is collected a certain value, has been proved improving average 0.38dB than the conventional method, the generalied recurrent neural networks, by using PSNR. Also, a result image of the proposed method was similar to the original image than a result image of the conventional method by comparing to visual images.

Genetically Optimized Hybrid Fuzzy Neural Networks Based on Linear Fuzzy Inference Rules

  • Oh Sung-Kwun;Park Byoung-Jun;Kim Hyun-Ki
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.183-194
    • /
    • 2005
  • In this study, we introduce an advanced architecture of genetically optimized Hybrid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design methodology supporting their construction. A series of numeric experiments is included to illustrate the performance of the networks. The construction of gHFNN exploits fundamental technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms (GAs). The architecture of the gHFNNs results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). In this tandem, a FNN supports the formation of the premise part of the rule-based structure of the gHFNN. The consequence part of the gHFNN is designed using PNNs. We distinguish between two types of the linear fuzzy inference rule-based FNN structures showing how this taxonomy depends upon the type of a fuzzy partition of input variables. As to the consequence part of the gHFNN, the development of the PNN dwells on two general optimization mechanisms: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the gHFNN, the models are experimented with a representative numerical example. A comparative analysis demonstrates that the proposed gHFNN come with higher accuracy as well as superb predictive capabilities when comparing with other neurofuzzy models.

Fuzzy Neural Network Model Using Asymmetric Fuzzy Learning Rates (비대칭 퍼지 학습률을 이용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.800-804
    • /
    • 2005
  • This paper presents a fuzzy learning rule which is the fuzzified version of LVQ(Learning Vector Quantization). This fuzzy learning rule 3 uses fuzzy learning rates. instead of the traditional learning rates. LVQ uses the same learning rate regardless of correctness of classification. But, the new fuzzy learning rule uses the different learning rates depending on whether classification is correct or not. The new fuzzy learning rule is integrated into the improved IAFC(Integrated Adaptive Fuzzy Clustering) neural network. The improved IAFC neural network is both stable and plastic. The iris data set is used to compare the performance of the supervised IAFC neural network 3 with the performance of backprogation neural network. The results show that the supervised IAFC neural network 3 is better than backpropagation neural network.

Stable Path Tracking Control Using a Wavelet Based Fuzzy Neural Network for Mobile Robots

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2254-2259
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network(WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges advantages of neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of mobile robot using the gradient descent(GD) method. In addition, an approach that uses adaptive learning rates for the training of WFNN controller is driven via a Lyapunov stability analysis to guarantee the fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control performance of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

  • PDF

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Nonlinear Controller Design by Hybrid Identification of Fuzzy-Neural Network and Neural Network (퍼지-신경회로망과 신경회로망의 혼합동정에 의한 비선형 제어기 설계)

  • 이용구;손동설;엄기환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.127-139
    • /
    • 1996
  • In this paper we propose a new controller design method using hybrid fuzzy-neural netowrk and neural network identification in order ot control systems which are more and more getting nonlinearity. Proposed method performs, for a nonlinear plant with unknown functions, hybird identification using a fuzzy-neural network and a neural network, and then a stable nonlinear controller is designed with those identified informations. To identify a nonlinear function, which is directly related to input signals, we can use a neural network which is satisfied with the proposed stable condition. To identify a nonlinear function, which is not directly related to input signals, we can use a fuzzy-neural network which has excellent identification characteristics. In order to verify excellent control performances of the proposed method, we compare the porposed control method with a conventional neural network control method through simulations and experiments with one link manipulator.

  • PDF