• 제목/요약/키워드: neural networks (computer)

검색결과 1,044건 처리시간 0.025초

A Learning Algorithm of Fuzzy Neural Networks with Trapezoidal Fuzzy Weights

  • Lee, Kyu-Hee;Cho, Sung-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.404-409
    • /
    • 1998
  • In this paper, we propose a learning algorithm of fuzzy neural networks with trapezoidal fuzzy weights. This fuzzy neural networks can use fuzzy numbers as well as real numbers, and represent linguistic information better than standard neural networks. We construct trapezodal fuzzy weights by the composition of two triangles, and devise a learning algorithm using the two triangular membership functions, The results of computer simulations on numerical data show that the fuzzy neural networks have high fitting ability for target output.

  • PDF

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • 컴퓨터교육학회논문지
    • /
    • 제6권3호
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

공장 자동화에 적용되는 Neural Networks의 기술동향 및 전망 (Technical Trend and View of Neural Networks for Factory Automation)

  • 이진섭;하재헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.892-895
    • /
    • 1991
  • In this study, it has been refering that disposal of rapidly international information society and artificial intelligence neural networks of the vanguard software technology. This paper is human brain cell structure modeling in order to neural networks realization for order language and computer embodiment of parallel processing. And it is shown that the usage extreme of time saving and correct judgement for business services, Overviews some of the currently popular neural networks architectures, and describes the current state of the neural networks technology.

  • PDF

오차 자기순환 신경회로망 기반 반능동 현가시스템 제어기 개발 (The development of semi-active suspension controller based on error self recurrent neural networks)

  • 이창구;송광현
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.932-940
    • /
    • 1999
  • In this paper, a new neural networks and neural network based sliding mode controller are proposed. The new neural networks are an mor self-recurrent neural networks which use a recursive least squares method for the fast on-line leammg. The error self-recurrent neural networks converge considerably last than the back-prollagation algorithm and have advantage oi bemg less affected by the poor initial weights and learning rate. The controller for suspension system is designed according to sliding mode technique based on new proposed neural networks. In order to adapt shding mode control mnethod, each frame dstance hetween ground and vehcle body is estimated md controller is designed according to estimated neural model. The neural networks based sliding mode controller approves good peiformance throllgh computer sirnulations.

  • PDF

신경망을 이용한 건물 공조시스템의 최적제어 관한 연구 ((A Simulation of Neural Networks Control for Building HVAC))

  • 육상조;유승선;이극
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권9호
    • /
    • pp.1199-1206
    • /
    • 2002
  • 본 연구에서는 일반적인 건물의 공조시스템의 제어에 이용되고 있는 비례-적분(PI)제어의 적용특성을 알아보고 새로운 지능형 제어방식중의 하나인 신경망(neural networks) 제어의 적용가능성을 검토하여 보았다. PI제어에 의한 건물공조와 신경망 제어에 의한 건물공조에 대한 성능을 비교한다. 기존의 PI제어에 의하여 운영되던 건물을 신경망 제어로서 운용하는 경우 기후적, 시스템적 변화에 자체적 대응이 가능한 제어로 적용 가능하다.

  • PDF

영상 잡음 제거 필터를 위한 퍼지 순환 신경망 연구 (A study on the Fuzzy Recurrent Neural Networks for the image noise elimination filter)

  • 변오성
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.61-70
    • /
    • 2011
  • 본 논문은 퍼지를 적용한 순환 신경망을 이용하여 잡음 제거용 필터를 구현하였다. 제안된 퍼지 순환 신경망 구조는 기본적으로 순환 신경망 구조를 이용하여 가중치 및 반복횟수가 일정한 값에 수렴하도록 하였으며, 하이브리드 퍼지 소속 함수 연산자를 적용하여 수학적인 계산량 및 복잡성를 단순화하였다. 본 논문은 제안된 퍼지 순환 신경망 구조 필터가 일반적인 순환 신경망 구조 필터보다 평균 0.38dB 정도 영상복원이 개선됨을 PSNR을 이용하여 증명하였다. 또한 결과 영상 비교에서 제안된 방법을 적용하여 얻은 영상이 기존 방법을 적용하여 얻은 영상보다 원영상과 더 유사함을 확인하였다.

An Enhanced Neural Network Approach for Numeral Recognition

  • Venugopal, Anita;Ali, Ashraf
    • International Journal of Computer Science & Network Security
    • /
    • 제22권3호
    • /
    • pp.61-66
    • /
    • 2022
  • Object classification is one of the main fields in neural networks and has attracted the interest of many researchers. Although there have been vast advancements in this area, still there are many challenges that are faced even in the current era due to its inefficiency in handling large data, linguistic and dimensional complexities. Powerful hardware and software approaches in Neural Networks such as Deep Neural Networks present efficient mechanisms and contribute a lot to the field of object recognition as well as to handle time series classification. Due to the high rate of accuracy in terms of prediction rate, a neural network is often preferred in applications that require identification, segmentation, and detection based on features. Neural networks self-learning ability has revolutionized computing power and has its application in numerous fields such as powering unmanned self-driving vehicles, speech recognition, etc. In this paper, the experiment is conducted to implement a neural approach to identify numbers in different formats without human intervention. Measures are taken to improve the efficiency of the machines to classify and identify numbers. Experimental results show the importance of having training sets to achieve better recognition accuracy.

A Comparison of the Performance of Classification for Biomedical Signal using Neural Networks

  • Kim Man-Sun;Lee Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권3호
    • /
    • pp.179-183
    • /
    • 2006
  • ECG consists of various waveforms of electric signals of heat. Datamining can be used for analyzing and classifying the waveforms. Conventional studies classifying electrocardiogram have problems like extraction of distorted characteristics, overfitting, etc. This study classifies electrocardiograms by using BP algorithm and SVM to solve the problems. As results, this study finds that SVM provides an effective prohibition of overfitting in neural networks and guarantees a sole global solution, showing excellence in generalization performance.

Saturation Compensation of a DC Motor System Using Neural Networks

  • Jang, Jun-Oh;Ahn, Ihn-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.169-174
    • /
    • 2005
  • A neural networks (NN) saturation compensation scheme for DC motor systems is presented. The scheme that leads to stability, command following and disturbance rejection is rigorously proved. On-line weights tuning law, the overall closed loop performance and the boundness of the NN weights are derived and guaranteed based on Lyapunov approach. The simulation and experimental results show that the proposed scheme effectively compensate for saturation nonlinearity in the presence of system uncertainty.

Computer Science Research Ideas Generation Using Neural Networks

  • Maghraby, Ashwag;Assaeed, Joanna
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.127-130
    • /
    • 2022
  • The number of published journals, conferences, and research papers in computer science is increasing rapidly, which has led to a challenge in coming up with new and unique ideas for research. To alleviate the issue, this paper uses artificial neural networks (ANNs) to generate new computer science research ideas. It does so by using a dataset collected from IEEE published journals and conferences to train an ANN model. The results reveal that the model has a 14% success rate in generating usable ideas. The outcome of this paper has implications for helping both new and experienced researchers come up with novel research topics.