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Abstract

In this paper. we propose a learning algorithm of fuzzy neural networks with trapezoidal fuzzy weights. This
fuzzy neural networks can use fuzzy numbers as well as real numbers, and represent linguistic information betler
than standard neural networks. We construct trapezoidal fuzzy weights by the composition of two triangles, and
devise a learning algorithm using the two triangular membership functions. The results of computer simulations
on numerical data show that the fuzzy neural networks have high fitting ability for target output.
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1. Introduction . e

) ] o It requires the modification of standard  back
It s very difficult  to represent linguistic . ) . .
i ) ’ ) ) propagation algorithm. To show the usefulness of the
miormation from human experts using only numerical
. . T proposed fuzzy neural networks. we apply them 1o
duta. For better representation of linguistic knowledge.
» - . several examples.

fuzzy i-then rules are used very often. Furthermore,

neural networks using fuzzy numbers as well as .
) $_ ’ 2. Fuzzy Neural Networks
numerical numbers as inputs and outputs have been

roposed in order to integrate neural networks and .
? P ) _ = . 2.1 Architecture
fuzzy logic [2,4,5,7]. Fuzzy neural networks using

wiangular fuzzy numbers as weights were proposed by - . .
= } ) ; The . input-output relation of a three-layer
H. Ishibuchi et al. [3]. Extending these concepts, this
g ) ) feedforward neural network can be formulated as
paper proposes a learning algorithm and architecture of s . .
i ) . i follows. This neural network has #, input units. 1y
fuzzy neural networks which utilize not only triangular

. . . output units, and output units. The fuzzy weights
fuzzx numbers but also trapezoidal fuzzy numbers as P e P y =

weights and fuzzy biases are trapezoidal fuzzy numbers, and the

We construct a trapezoid as composition of two  MPUIS and target outputs are any shape of fuzz

wianeles  and  devise a learning algorthim using  the numbers.
triangutar membership functions. Hence. each wapezoidal _
fuszv weight has six  parameters and is  modified * Input units :

through learning without destruction of its trapezoidal O, =X, =L ..n
shape. This fuzzy neural network s three layer + Hidden units :

fecdforward neural network. The fuzzy numbers used in O, = ANet,). 7=1.2. .. .ny,
each unit of this neural network are represented by Net,, == 211/,,(,57‘ e,
closed intervals of the associate values of A levels, and
numerically calculated for A-level sets. The interval

arithmetic is used for the calculation of fuzzy numbers. » Output units :
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O, = ANety), k=1,2.... n

Net p= 2 W, 0, + 6,

where X, 15 a fuzzy input. W, and W, are trapezoidal
fuzzy weights. and @, and @, are trapezoidal fuzzy
Fig. | the

fuzzified neural network.

biases. represents architecture  of  ths
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Fig 1. Architecture of fuzzy neural network
2.2 Fuzzy Numbers

The wperatons of fuzzy numbers can be defined
by the extension principle of Zadeh. The fuzzy outputs

are numericalhy  calculated by interval arithmetic  for
level sets of fuzzy weights and fuzzy inputs [1]. In
addition. multiplication and function of fuzzy numbers

are defined as following.

a2y = mas g (D Apg(lz=x+y},
a2 = max Lo () Aeg(lz = xv),

1 o(2) = max {e {0z = Ax)},

where 4. 22 and A are fuzzy numbers. These operations
are iltustrated in Fig. 2.
The A-level set is detined as

X)) e s 30} for 0CA<],

where  z2-(x)

denote /-level set of X as

(XY= (X0 [X18,

is membership function of X We
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Fig 2. Hlustration of fuzzy arithmetic

where { X]% and [ X]} are the lower and upper limits

of the A level set of X. Then we can write above

operations of fuzzy numbers as

{AL+[Bli=[[ AL+ B, AL+ B8]
(Al - [Bly=[min{[Al} - [BI}. [A]} - [Bl}).
max {[ AL, - [Bli. [AL] - [8]}))
where B is nonnegative. It is assumed that input
numbers of the fuzzy neural network are nonnegative.
Our approach is based on the level sets of fuzzy
numbers, and arbitrary number of & can be used. For
example, Fig. 3 represents a fuzzy number denoted by

6 level sets for A=0.0. 0.2.. .10

[

Membership

Fig 3. Fuzzy numbers in fuzzy neural network
3. Learning Algorithm
3.1 Cost Function
dimensional  fuzzy target

Let 7, be the 5,
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output. and 0O, be the actual output. Then the cost

function for the Ath output of level A is

_ L v
Cpi = Cpp t €t

chm b urﬂéj0mb’

T 1041
2

v
eqn=nh-

Then cost function of the 4 level sets is

.
Cpp = ;ep&h

Hence we can write the cost function of (X,7,) as

e= Dew

3.2 Derivation of Learning Algorithm

In this section we derive a learning algorithm of
the neural network from the cost function describd in
the previous section. The fuzzy weights and biases are
adjusted to minimize the value of cost function. Since
the adjustment should not distort the trapezoida! shape
of weights and biases. we do not change the h-level
set of the fuzzy weights independently. In this paper.
we construct a trapezoid as the composition of two
symmetric triangles (shown in Fig. 4). We can update
each trapezoidal fuzzy weights without destructing its
shape by the movement of the two triangles and the

change of their width.

]

Membership

Fig 4. Trapezoidal fuzzy weights

Then. let the trapezoidal fuzzy weights have six
parameters as
8 C 5 12 ol 22
W, = (u‘f,’, w ? W wl? el wf,- ),

SR A TS BN T S B o B 1
W= (' wy, wil wi, wii, wii),

O,=(6: . 0.1, 0, 68, 0. 65,
0,= (07" 07, 0", 67, 67,6/,

Fig. 5 shows the parameters of a trapezoidal fuzz

weights. Since the two triangles composing a

trapezoidal fuzzy weight are symmetric. we can write

the weights as follows,

Ll 0 Ll 0
WO Wk + wy; Wl = w; +w;
ks T 2 B o 2
L2 w 2 u
o witwy o_ Wi tw;
Wy = 2 Wi = 7 .
i 2 L2, al?
¢ — 0+ 8y 0% — g+ 0,
3 2 B i 2 »
Lt u L 17
95— 8¢+ 0y g9 — g;' + 6,
‘ 2 T 2
o |
o \
e}
=
= \
= \
0 A
i / -
v WoOOw T w

Fig 5. Parameters of trapezoidal fuzzy weights

We derive a rule of adjustment of the weights for

each  parameter.  According to  the  standard

wi! and

back-propagation algorithm [6], parameters
wy' are updated by the following formula. and the

other weights are updated in the same way.

Wil (14 1) = wi () + dw (D).
Wi e+ D) = wil (0 + dwd (),
de

= —a dwk (- 1),

A= y-
wi (8 7 F

‘ de,, ;
Al () =y - ﬁ-ka s Aw (1),

where 7 is index of the number of iterations through
learning, 5 is positive real constant, and o is positive
real constant less than /.0. Then the derivatives are
written as follows.
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e dew LWy dey, LWL
swy Al Wylh dwy Alwd Akl
Gew AW dew LMLy
ol W17 R FINAE dup'
ot Oew  SUWIL 9u AL
Gull FIA o’ N Jul!
Um;qtﬂMM’ de, AU

RS dwl! A W1 sl
In the meantime, followings are obvious tor cach
fi-level.

LWdE = k- (1 =)+l - L
SO y

[ = w5+ - (1= =)

LW =l - (1 “—)+ww —g-

W=t R -2,
Henee

T 0%y 08w
Gt PRI 2 aLu iy 2o
G 3Cm n 0, Vi
i C ot ’ (1
Gu LWl 2 sl w Il =)

In this way. the amount of adjustment is calculated.

Finally, the weights can be updated as follows.
wil (4 1) = wi (D + dw (8,
wil(r+ 1) = w (l)+Awk’1(t)

we (H+ 1) + wl! (t+1)

w4 ) = 5

Hoaeptr+ 1)

are swaped.

is larger than [ (£+4 1). the two values

i and wl are modified in the same way. An
example for the adjustment of weights 15 illustrated in
Fig. 6.

network are modified in this way.

All the weights and biases of the tfuzzy neural

4. Computer Simulations

In this section, we illustrate results of computer
simulations on simple numerical examples. A fuzzy
ncural network is used with single input unit. 3 hidden

,.me#_v,,_ Y a i

Fig 6. Modification of weights

units, single output unit. The specification of the neural
network in the examples is shown in Table 1.
Table 1. Specifications of parameters

Learning constant 7 0.5
Momentum constant ¢ 09
Number of iterations 200

Initial value of weights random
Value of A 01,02, ...,10

4.1 Example 1

Suppose that the next fuzzy if-then rules are given
for the fuzzy neural network.

Fuzzy rules : If x is small then 3 is small.

If x is large then 1y is large.

The membership functions of “small” and “large” are

shown in Fig. 7. The shape of membership functions in
this example is triangle. The left

triangular  fuzzy

number is “small”. and the right one means “large” in

this figure. Actual fuzzy outputs from the trained neural
network are shown in Fig 8 We can see that the
proposed neural network produces good performence

wnh respect 10 the training daxa

Membarsh

Fig 7
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Fig 8. Fuzz\ oulputs of “small” and

“large”
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4.2 Example 2
Let us consider next fuzzy if-then rules.
Fuzzy rules :

If x is medium small then 3 is medium small.

If x is medium large then 3 is medium large.
Fig. 9 represents the membership functions of the fuzzy
numbers. “medium small” and “medium large”. We can
numbers of this example are
The result is shown in Fig.

see that the {uzzy
trapezoidal fuzzy numbers.

10.
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Fig 9. Membership functions
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4.3 Example 3

in this section. we take the fuzzy rules as follows.
Fuzzy rules :

i x is more or less small then 3y is medium small.
If x is more or less large then 3 is medium large.
The membership functions of each linguistic value are
shown in Fig. 11 and [2. Fig. 11 represents “more or
and Fig. 12

shows “medium small” and “medium large”. The actual

less small” and “more or less large”.

fuzzy output is shown in Fig. 13.

nout

Yrernms

5 4 c6 ) 1 12

Fig Iiinp&t fuzzy numbers

The results indicate that the fuzziness of the fuzz
inputs 1s larger than that of the fuzzy targets. The
actual result illustrates that the fitting ability is high.
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Fig 13. Actual outputwiinr E;x'amplc 3

In order to examine the generalization abilin of the
trained neural network, we presented the fuzzy number
network. The
and the output

“more or less medium” to the neural

membership faction is shown in Fig. 14

from the trained neural network is shown in Fig. i3
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Fig. 14. Membership function
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Fig. 15 Actual test output

4.4 Example 4
In this example, we show that the fuzzy neural
network can handle real number inputs. A real number
x can be considered as a fuzzy number as follows.
1 if y=x
u,(y)={0 if y#x
Let us consider a single input and single output fuzzy
mapping. We suppose that the input of the fuzzy
mapping is real number while the output is a fuzzy
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number.

Fuzzy rules : If x is 0 then 3 is medium small.

If x is 1 then 3 is medium large.

The membership functions of “medium small” and

“medium large” are show in Fig. 12. Fig. 16 represents
the actual output for the example. It shows that the

fuzzy neural network can treat real numbers as a

special case of fuzzy numbers.

‘ I::ig 14, Actual fll/ZS ﬁoutputs
5. Concluding Remarks

In this paper. we have proposed a learning algorithm

for three-layer feedforward fuzzy neural networks with

trapezoidal fuzzy weights which are represented by

combining two triangular fuzzy numbers. The learning
algorithms  derived can be viewed as an extention of
standard back-propagation algorithm to the case of fuzzy
input vectors and fuzzy target vectors. The neural network
has worked well for several cxamples: It has high fitting

abilin for various fuzzy largets.
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