• Title/Summary/Keyword: neural network training

Search Result 1,742, Processing Time 0.029 seconds

3차원 물체인식을 위한 신경회로망 인식시트메의 설계

  • 김대영;이창순
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.2 no.1
    • /
    • pp.73-87
    • /
    • 1997
  • Multilayer neural network using a modified beackpropagation learning algorithm was introduced to achieve automatic identification of different types of aircraft in a variety of 3-D orientations. A 3-D shape of an aircraft can be described by a library of 2-D images corresponding to the projected views of an aircraft. From each 2-D binary aircraft image we extracted 2-D invariant (L, Φ) feature vector to be used for training neural network aircraft classifier. Simulations concerning the neural network classification rate was compared using nearest-neighbor classfier (NNC) which has been widely served as a performance benchmark. And we also introduced reliability measure of the designed neural network classifier.

A Study on the Obstacle Avoidance using Fuzzy-Neural Networks (퍼지신경회로망을 이용한 장애물 회피에 관한 연구)

  • 노영식;권석근
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.338-343
    • /
    • 1999
  • In this paper, the fuzzy neural network for the obstacle avoidance, which consists of the straight-line navigation and the barrier elusion navigation, is proposed and examined. For the straight-line navigation, the fuzzy neural network gets two inputs, angle and distance between the line and the mobile robot, and produces one output, steering velocity of the mobile robot. For the barrier elusion navigation, four ultrasonic sensors measure the distance between the barrier and the mobile robot and provide the distance information to the network. Then the network outputs the steering velocity to navigate along the obstacle boundary. Training of the proposed fuzzy neural network is executed in a given environment in real-time. The weights adjusting uses the back-propagation of the gradient of error to be minimized. Computer simulations are carried out to examine the efficiency of the real time learning and the guiding ability of the proposed fuzzy neural network. It has been shown that the mobile robot that employs the proposed fuzzy neural network navigates more safely with and less trembling locus compared with the previous reported efforts.

  • PDF

Two-Step Neural Network Approach for Determining EDM(Electrical Discharge Machining) Parameters in Low Tool Erosion (전극 저소모 방전조건 결정을 위한 2단계 신경망 접근)

  • 이건범;주상윤;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.44-51
    • /
    • 1998
  • Two-step neural network is designed for determining electrical discharge machining parameters in low erosion. The first neural network, which is used as a classification network, checks whether the current conditions are appropriate to electrical discharge machining in low tool erosion. If the conditions are appropriate to EDM in low erosion, suitable EDM parameters are generated by the second neural network. Theoretically known EDM conditions are produced and also utilized for training the second neural network. The trained neural network is tested how well suitable EDM machining conditions are generated under unknown machining situations Experimental result shows that the proposed two-step neural network approach could be effectively used for determining EDM parameters in low tool erosion. The results also have a practical contribution to EDM area in that it could be applied for maintaining low tool wear as well as obtaining maximum machining rates simultaneously.

  • PDF

Discriminative Training of Predictive Neural Network Models (예측신경회로망 모델의 변별력 있는 학습)

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.1E
    • /
    • pp.64-70
    • /
    • 1994
  • Predictive neural network models are powerful speech recognition models based on a nonlinear pattern prediction. But those models suffer from poor discrimination between acoustically similar words. In this paper we propose an discriminative training algorithm for predictive neural network models. This algorithm is derived from GPD (Generalized Probabilistic Descent) algorithm coupled with MCEF(Minimum Classification Error Formulation). It allows direct minimization of a recognition error rate. Evaluation of our training algoritym on ten Korean digits shows its effectiveness by 30% reduction of recognition error.

  • PDF

A GPD-BASED DISCRIMINATIVE TRAINING ALGORITHM FOR PREDICTIVE NEURAL NETWORK MODELS

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.997-1002
    • /
    • 1994
  • Predictive neural network models are powerful speech recognition models based on a nonlinear pattern prediction. Those models can effectively normalize the temporal and spatial variability of speech signals. But those models suffer from poor discrimination between acoustically similar words. In this paper, we propose a discriminative training algorithm for predictive neural network models based on a generalized probabilistic descent (GPD) algorithm and minimum classification error formulation (MCEF). The Evaluation of our training algorithm on ten Korean digits shows its effectiveness by 40% reduction of recognition error.

  • PDF

Channel modeling based on multilayer artificial neural network in metro tunnel environments

  • Jingyuan Qian;Asad Saleem;Guoxin Zheng
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.557-569
    • /
    • 2023
  • Traditional deterministic channel modeling is accurate in prediction, but due to its complexity, improving computational efficiency remains a challenge. In an alternative approach, we investigated a multilayer artificial neural network (ANN) to predict large-scale and small-scale channel characteristics in metro tunnels. Simulated high-precision training datasets were obtained by combining measurement campaign with a ray tracing (RT) method in a metro tunnel. Performance on the training data was used to determine the number of hidden layers and neurons of the multilayer ANN. The proposed multilayer ANN performed efficiently (10 s for training; 0.19 ms for prediction), and accurately, with better approximation of the RT data than the single-layer ANN. The root mean square errors (RMSE) of path loss (2.82 dB), root mean square delay spread (0.61 ns), azimuth angle spread (3.06°), and elevation angle spread (1.22°) were impressive. These results demonstrate the superior computing efficiency and model complexity of ANNs.

Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks

  • Mazloom, Moosa;Tajar, Saeed Farahani;Mahboubi, Farzan
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.401-409
    • /
    • 2020
  • Artificial neural networks are used as a useful tool in distinct fields of civil engineering these days. In order to control long-term quality of Self-Compacting Semi-Lightweight Concrete (SCSLC), the 90 days compressive strength is considered as a key issue in this paper. In fact, combined artificial neural networks are used to predict the compressive strength of SCSLC at 28 and 90 days. These networks are able to re-establish non-linear and complex relationships straightforwardly. In this study, two types of neural networks, including Radial Basis and Multilayer Perceptron, were used. Four groups of concrete mix designs also were made with two water to cement ratios (W/C) of 0.35 and 0.4, as well as 10% of cement weight was replaced with silica fume in half of the mixes, and different amounts of superplasticizer were used. With the help of rheology test and compressive strength results at 7 and 14 days as inputs, the neural networks were used to estimate the 28 and 90 days compressive strengths of above-mentioned mixes. It was necessary to add the 14 days compressive strength in the input layer to gain acceptable results for 90 days compressive strength. Then proper neural networks were prepared for each mix, following which four existing networks were combined, and the combinatorial neural network model properly predicted the compressive strength of different mix designs.

Face Region Detection using a Color Union Model and The Levenberg-Marquadt Algorithm (색상 조합 모델과 LM(Levenberg-Marquadt)알고리즘을 이용한 얼굴 영역 검출)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.4
    • /
    • pp.255-262
    • /
    • 2007
  • This paper proposes an enhanced skin color-based detection method to find a region of human face in color images. The proposed detection method combines three color spaces, RGB, $YC_bC_r$, YIQ and builds color union histograms of luminance and chrominance components respectively. Combined color union histograms are then fed in to the back-propagation neural network for training and Levenberg-Marquadt algorithm is applied to the iteration process of training. Proposed method with Levenberg-Marquadt algorithm applied to training process of neural network contributes to solve a local minimum problem of back-propagation neural network, one of common methods of training for face detection, and lead to make lower a detection error rate. Further, proposed color-based detection method using combined color union histograms which give emphasis to chrominance components divided from luminance components inputs more confident values at the neural network and shows higher detection accuracy in comparison to the histogram of single color space. The experiments show that these approaches perform a good capability for face region detection, and these are robust to illumination conditions.

Classification of bearded seals signal based on convolutional neural network (Convolutional neural network 기법을 이용한 턱수염물범 신호 판별)

  • Kim, Ji Seop;Yoon, Young Geul;Han, Dong-Gyun;La, Hyoung Sul;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.235-241
    • /
    • 2022
  • Several studies using Convolutional Neural Network (CNN) have been conducted to detect and classify the sounds of marine mammals in underwater acoustic data collected through passive acoustic monitoring. In this study, the possibility of automatic classification of bearded seal sounds was confirmed using a CNN model based on the underwater acoustic spectrogram images collected from August 2017 to August 2018 in East Siberian Sea. When only the clear seal sound was used as training dataset, overfitting due to memorization was occurred. By evaluating the entire training data by replacing some training data with data containing noise, it was confirmed that overfitting was prevented as the model was generalized more than before with accuracy (0.9743), precision (0.9783), recall (0.9520). As a result, the performance of the classification model for bearded seals signal has improved when the noise was included in the training data.

Prediction of rebound in shotcrete using deep bi-directional LSTM

  • Suzen, Ahmet A.;Cakiroglu, Melda A.
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • During the application of shotcrete, a part of the concrete bounces back after hitting to the surface, the reinforcement or previously sprayed concrete. This rebound material is definitely not added to the mixture and considered as waste. In this study, a deep neural network model was developed to predict the rebound material during shotcrete application. The factors affecting rebound and the datasets of these parameters were obtained from previous experiments. The Long Short-Term Memory (LSTM) architecture of the proposed deep neural network model was used in accordance with this data set. In the development of the proposed four-tier prediction model, the dataset was divided into 90% training and 10% test. The deep neural network was modeled with 11 dependents 1 independent data by determining the most appropriate hyper parameter values for prediction. Accuracy and error performance in success performance of LSTM model were evaluated over MSE and RMSE. A success of 93.2% was achieved at the end of training of the model and a success of 85.6% in the test. There was a difference of 7.6% between training and test. In the following stage, it is aimed to increase the success rate of the model by increasing the number of data in the data set with synthetic and experimental data. In addition, it is thought that prediction of the amount of rebound during dry-mix shotcrete application will provide economic gain as well as contributing to environmental protection.