• 제목/요약/키워드: neural network techniques

검색결과 1,043건 처리시간 0.026초

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1997년도 추계학술대회발표논문집; 홍익대학교, 서울; 1 Nov. 1997
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제26권6호
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.

신경망을 이용한 PID 제어기의 최적 이득값 추정 (Optimal Gain Estimation of PID Controller Using Neural Networks)

  • 박성욱;손준혁;서보혁
    • 전기학회논문지P
    • /
    • 제53권3호
    • /
    • pp.134-141
    • /
    • 2004
  • Recently, neural network techniques are widely used in adaptive and learning control schemes for production systems. However, in general it takes up a lot of time to learn in the case applied in control system. Furthermore, the physical meaning of neural networks constructed as a result is not obvious. And in practice since it is difficult for the PID gains suitably, lots of researches have been reported with respect of turning schemes of PID gains. A neural network-based PID control scheme is proposed, which extracts skills of human experts as PID gains. This controller is designed by using three-layered neural networks. The effectiveness of the proposed neural network-based PID control scheme is investigated through an application for a production control system. This control method can enable a plant to operate smoothy and obviously as the plant condition varies with any unexpected accidents.

데이터 마이닝을 이용한 입원 암 환자 간호 중증도 예측모델 구축 (An Analysis of Nursing Needs for Hospitalized Cancer Patients;Using Data Mining Techniques)

  • 박선아
    • 종양간호연구
    • /
    • 제5권1호
    • /
    • pp.3-10
    • /
    • 2005
  • Back ground: Nurses now occupy one third of all hospital human resources. Therefore, efficient management of nursing manpower is getting more important. While it is very clear that nursing workload requirement analysis and patient severity classification should be done first for the efficient allocation of nursing workforce, these processes have been conducted manually with ad hoc rule. Purposes: This study was tried to make a predict model for patient classification according to nursing need. We tried to find the easier and faster method to classify nursing patients that can help efficient management of nursing manpower. Methods: The nursing patient classifications data of the hospitalized cancer patients in one of the biggest cancer center in Korea during 2003.1.1-2003.12.31 were assessed by trained nurses. This study developed a prediction model and analyzing nursing needs by data mining techniques. Patients were classified by three different data mining techniques, (Logistic regression, Decision tree and Neural network) and the results were assessed. Results: The data set was created using 165,073 records of 2,228 patients classification database. Main explaining variables were as follows in 3 different data mining techniques. 1) Logistic regression : age, month and section. 2) Decision tree : section, month, age and tumor. 3) Neural network : section, diagnosis, age, sex, metastasis, hospital days and month. Among these three techniques, neural network showed the best prediction power in ROC curve verification. As the result of the patient classification prediction model developed by neural network based on nurse needs, the prediction accuracy was 84.06%. Conclusion: The patient classification prediction model was developed and tested in this study using real patients data. The result can be employed for more accurate calculation of required nursing staff and effective use of labor force.

  • PDF

PREDICTION OF EMISSIONS USING COMBUSTION PARAMETERS IN A DIESEL ENGINE FITTED WITH CERAMIC FOAM DIESEL PARTICULATE FILTER THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUES

  • BOSE N.;RAGHAVAN I.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.95-105
    • /
    • 2005
  • Diesel engines have low specific fuel consumption, but high particulate emissions, mainly soot. Diesel soot is suspected to have significant effects on the health of living beings and might also affect global warming. Hence stringent measures have been put in place in a number of countries and will be even stronger in the near future. Diesel engines require either advanced integrated exhaust after treatment systems or modified engine models to meet the statutory norms. Experimental analysis to study the emission characteristics is a time consuming affair. In such situations, the real picture of engine control can be obtained by the modeling of trend prediction. In this article, an effort has been made to predict emissions smoke and NO$_{x}$ using cylinder combustion derived parameters and diesel particulate filter data, with artificial neural network techniques in MATLAB environment. The model is based on three layer neural network with a back propagation learning algorithm. The training and test data of emissions were collected from experimental set up in the laboratory for different loads. The network is trained to predict the values of emission with training values. Regression analysis between test and predicted value from neural network shows least error. This approach helps in the reduction of the experimentation required to determine the smoke and NO$_{x}$ for the catalyst coated filters.

A Review of Artificial Intelligence Models in Business Classification

  • Han, In-goo;Kwon, Young-sig;Jo, Hong-kyu
    • 지능정보연구
    • /
    • 제1권1호
    • /
    • pp.23-41
    • /
    • 1995
  • Business researchers have traditionally used statistical techniques for classification. In late 1980's, inductive learning started to be used for business classification. Recently, neural network began to be a, pp.ied for business classification. This study reviews the business classification studies, identifies a neural network a, pp.oach as the most powerful classification tool, and discusses the problems and issues in neural network a, pp.ications.

  • PDF

인공신경망을 이용한 좌심실보조장치의 제어 시뮬레이션 (Control Simulation of Left Ventricular Assist Device using Artificial Neural Network)

  • 김상현;정성택;김훈모
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 1998
  • 본 연구에서 복잡한 비선형적 특성을 갖는 공압식 좌심실보조장치의 모델링과 제어에 인공신경망을 제안하였다. 일반적으로 좌심실보조장치는 비선형이 보상되어야 하는데 인공신경망은 학습능력에 의해 비선형 동적 시스템의 제어에 적용될 수 있다. 인공신경망 모델링을 통해 좌심실 보조장치의 동적 모델을 모델링하고 이를 기반으로 하여 인공신경망 제어기가 설계되었다. 제안된 알고리즘을 이용한 좌심실보조장치의 모델링과 제어성능 및 유효성은 컴퓨터 시뮬레이션에 의해 증명되었다.

  • PDF

GENIE : 신경망 적응과 유전자 탐색 기반의 학습형 지능 시스템 엔진 (GENIE : A learning intelligent system engine based on neural adaptation and genetic search)

  • 장병탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.27-34
    • /
    • 1996
  • GENIE is a learning-based engine for building intelligent systems. Learning in GENIE proceeds by incrementally modeling its human or technical environment using a neural network and a genetic algorithm. The neural network is used to represent the knowledge for solving a given task and has the ability to grow its structure. The genetic algorithm provides the neural network with training examples by actively exploring the example space of the problem. Integrated into the training examples by actively exploring the example space of the problem. Integrated into the GENIE system architecture, the genetic algorithm and the neural network build a virtually self-teaching autonomous learning system. This paper describes the structure of GENIE and its learning components. The performance is demonstrated on a robot learning problem. We also discuss the lessons learned from experiments with GENIE and point out further possibilities of effectively hybridizing genetic algorithms with neural networks and other softcomputing techniques.

  • PDF

인공신경망 기초 의사결정트리 분류기에 의한 시계열모형화에 관한 연구 (A Neural Network-Driven Decision Tree Classifier Approach to Time Series Identification)

  • 오상봉
    • 한국시뮬레이션학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 1996
  • We propose a new approach to classifying a time series data into one of the autoregressive moving-average (ARMA) models. It is bases on two pattern recognition concepts for solving time series identification. The one is an extended sample autocorrelation function (ESACF). The other is a neural network-driven decision tree classifier(NNDTC) in which two pattern recognition techniques are tightly coupled : neural network and decision tree classfier. NNDTc consists of a set of nodes at which neural network-driven decision making is made whether the connecting subtrees should be pruned or not. Therefore, time series identification problem can be stated as solving a set of local decisions at nodes. The decision values of the nodes are provided by neural network functions attached to the corresponding nodes. Experimental results with a set of test data and real time series data show that the proposed approach can efficiently identify the time seires patterns with high precision compared to the previous approaches.

  • PDF

신경회로망을 이용한 미케니컬 실의 이상상태 감시 (Monitoring of Mechanical Seal Failure with Artificial Neural Network)

  • Lee, W.K.;Lim, S.J.;Namgung, S.
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.30-37
    • /
    • 1995
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are gengrally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage,fast and severe wear, excessive torque, and squeaking results in big problems. To monitor the failure of mechanical seals and to propose the proper monitoring techniques with artificial neural network, sliding wear experiments were conducted. Torque and temperature of the mechanical seals were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. During the experiment, the variation of torque and temperature that meant an abnormal phenomenon, was observed. That experimental data recorded were applied to the developed monitoring system with artificial neural network. This study concludes that torque and temperature of mechanical seals wil be used to identify and to monitor the condition of sliding motion of mechanical seals. An availability to monitor the mechanical seal failure with artificial neural network was confirmed.

  • PDF