• 제목/요약/키워드: neural network ensemble

검색결과 128건 처리시간 0.025초

투자와 수출 및 환율의 고용에 대한 의사결정 나무, 랜덤 포레스트와 그래디언트 부스팅 머신러닝 모형 예측 (Investment, Export, and Exchange Rate on Prediction of Employment with Decision Tree, Random Forest, and Gradient Boosting Machine Learning Models)

  • 이재득
    • 무역학회지
    • /
    • 제46권2호
    • /
    • pp.281-299
    • /
    • 2021
  • This paper analyzes the feasibility of using machine learning methods to forecast the employment. The machine learning methods, such as decision tree, artificial neural network, and ensemble models such as random forest and gradient boosting regression tree were used to forecast the employment in Busan regional economy. The following were the main findings of the comparison of their predictive abilities. First, the forecasting power of machine learning methods can predict the employment well. Second, the forecasting values for the employment by decision tree models appeared somewhat differently according to the depth of decision trees. Third, the predictive power of artificial neural network model, however, does not show the high predictive power. Fourth, the ensemble models such as random forest and gradient boosting regression tree model show the higher predictive power. Thus, since the machine learning method can accurately predict the employment, we need to improve the accuracy of forecasting employment with the use of machine learning methods.

스텍앙상블과 인접 넷플로우를 활용한 침입 탐지 시스템 (Intrusion Detection System Utilizing Stack Ensemble and Adjacent Netflow)

  • 성지현;이권용;이상원;석민재;김세린;조학수
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.1033-1042
    • /
    • 2023
  • 본 논문은 네트워크에서 침입 행위를 하는 플로우를 탐지하는 네트워크 침입 탐지 시스템을 제안한다. 대다수 연구에 활용되는 데이터세트는 시계열 정보를 포함하고 있지 않으며, 공격 사례가 적은 공격은 샘플 데이터 수가 부족해 탐지율 향상이 어렵다. 하지만 탐지 방안에 대해 연구 결과가 부족한 상황이다. 본 연구에서는 ANN(Artificial Neural Network) 모델과 스택 앙상블 기법을 활용한 선행 연구를 토대로 하였다. 앞서 언급한 문제점을 해결하기 위해 인접 플로우를 활용하여 시계열 정보를 추가하고 희소 공격의 샘플을 강화하여 학습하여 탐지율을 보강하였다.

Wood Species Classification Utilizing Ensembles of Convolutional Neural Networks Established by Near-Infrared Spectra and Images Acquired from Korean Softwood Lumber

  • Yang, Sang-Yun;Lee, Hyung Gu;Park, Yonggun;Chung, Hyunwoo;Kim, Hyunbin;Park, Se-Yeong;Choi, In-Gyu;Kwon, Ohkyung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.385-392
    • /
    • 2019
  • In our previous study, we investigated the use of ensemble models based on LeNet and MiniVGGNet to classify the images of transverse and longitudinal surfaces of five Korean softwoods (cedar, cypress, Korean pine, Korean red pine, and larch). It had accomplished an average F1 score of more than 98%; the classification performance of the longitudinal surface image was still less than that of the transverse surface image. In this study, ensemble methods of two different convolutional neural network models (LeNet3 for smartphone camera images and NIRNet for NIR spectra) were applied to lumber species classification. Experimentally, the best classification performance was obtained by the averaging ensemble method of LeNet3 and NIRNet. The average F1 scores of the individual LeNet3 model and the individual NIRNet model were 91.98% and 85.94%, respectively. By the averaging ensemble method of LeNet3 and NIRNet, an average F1 score was increased to 95.31%.

Ensemble convolutional neural networks for automatic fusion recognition of multi-platform radar emitters

  • Zhou, Zhiwen;Huang, Gaoming;Wang, Xuebao
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.750-759
    • /
    • 2019
  • Presently, the extraction of hand-crafted features is still the dominant method in radar emitter recognition. To solve the complicated problems of selection and updation of empirical features, we present a novel automatic feature extraction structure based on deep learning. In particular, a convolutional neural network (CNN) is adopted to extract high-level abstract representations from the time-frequency images of emitter signals. Thus, the redundant process of designing discriminative features can be avoided. Furthermore, to address the performance degradation of a single platform, we propose the construction of an ensemble learning-based architecture for multi-platform fusion recognition. Experimental results indicate that the proposed algorithms are feasible and effective, and they outperform other typical feature extraction and fusion recognition methods in terms of accuracy. Moreover, the proposed structure could be extended to other prevalent ensemble learning alternatives.

Data Correction For Enhancing Classification Accuracy By Unknown Deep Neural Network Classifiers

  • Kwon, Hyun;Yoon, Hyunsoo;Choi, Daeseon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3243-3257
    • /
    • 2021
  • Deep neural networks provide excellent performance in pattern recognition, audio classification, and image recognition. It is important that they accurately recognize input data, particularly when they are used in autonomous vehicles or for medical services. In this study, we propose a data correction method for increasing the accuracy of an unknown classifier by modifying the input data without changing the classifier. This method modifies the input data slightly so that the unknown classifier will correctly recognize the input data. It is an ensemble method that has the characteristic of transferability to an unknown classifier by generating corrected data that are correctly recognized by several classifiers that are known in advance. We tested our method using MNIST and CIFAR-10 as experimental data. The experimental results exhibit that the accuracy of the unknown classifier is a 100% correct recognition rate owing to the data correction generated by the proposed method, which minimizes data distortion to maintain the data's recognizability by humans.

현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측 (Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction)

  • 이현진
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

흉부 CT 영상에서 비소세포폐암 환자의 재발 예측을 위한 종양 내외부 영상 패치 기반 앙상블 학습 (Ensemble Learning Based on Tumor Internal and External Imaging Patch to Predict the Recurrence of Non-small Cell Lung Cancer Patients in Chest CT Image)

  • 이예슬;조아현;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제24권3호
    • /
    • pp.373-381
    • /
    • 2021
  • In this paper, we propose a classification model based on convolutional neural network(CNN) for predicting 2-year recurrence in non-small cell lung cancer(NSCLC) patients using preoperative chest CT images. Based on the region of interest(ROI) defined as the tumor internal and external area, the input images consist of an intratumoral patch, a peritumoral patch and a peritumoral texture patch focusing on the texture information of the peritumoral patch. Each patch is trained through AlexNet pretrained on ImageNet to explore the usefulness and performance of various patches. Additionally, ensemble learning of network trained with each patch analyzes the performance of different patch combination. Compared with all results, the ensemble model with intratumoral and peritumoral patches achieved the best performance (ACC=98.28%, Sensitivity=100%, NPV=100%).

Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 시스템의 정확도 개선에 관한 연구 (A Study on the Accuracy Improvement of Movie Recommender System Using Word2Vec and Ensemble Convolutional Neural Networks)

  • 강부식
    • 디지털융복합연구
    • /
    • 제17권1호
    • /
    • pp.123-130
    • /
    • 2019
  • 웹 추천기법에서 가장 많이 사용하는 방식 중의 하나는 협업필터링 기법이다. 협업필터링 관련 많은 연구에서 정확도를 개선하기 위한 방안이 제시되어 왔다. 본 연구는 Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 방안에 대해 제안한다. 먼저 사용자, 영화, 평점 정보에서 사용자 문장과 영화 문장을 구성한다. 사용자 문장과 영화 문장을 Word2Vec에 입력으로 넣어 사용자 벡터와 영화 벡터를 구한다. 사용자 벡터는 사용자 합성곱 모델에 입력하고, 영화 벡터는 영화 합성곱 모델에 입력한다. 사용자 합성곱 모델과 영화 합성곱 모델은 완전연결 신경망 모델로 연결된다. 최종적으로 완전연결 신경망의 출력 계층은 사용자 영화 평점의 예측값을 출력한다. 실험결과 전통적인 협업필터링 기법과 유사 연구에서 제안한 Word2Vec과 심층 신경망을 사용한 기법에 비해 본 연구의 제안기법이 정확도를 개선함을 알 수 있었다.

Voting and Ensemble Schemes Based on CNN Models for Photo-Based Gender Prediction

  • Jhang, Kyoungson
    • Journal of Information Processing Systems
    • /
    • 제16권4호
    • /
    • pp.809-819
    • /
    • 2020
  • Gender prediction accuracy increases as convolutional neural network (CNN) architecture evolves. This paper compares voting and ensemble schemes to utilize the already trained five CNN models to further improve gender prediction accuracy. The majority voting usually requires odd-numbered models while the proposed softmax-based voting can utilize any number of models to improve accuracy. The ensemble of CNN models combined with one more fully-connected layer requires further tuning or training of the models combined. With experiments, it is observed that the voting or ensemble of CNN models leads to further improvement of gender prediction accuracy and that especially softmax-based voters always show better gender prediction accuracy than majority voters. Also, compared with softmax-based voters, ensemble models show a slightly better or similar accuracy with added training of the combined CNN models. Softmax-based voting can be a fast and efficient way to get better accuracy without further training since the selection of the top accuracy models among available CNN pre-trained models usually leads to similar accuracy to that of the corresponding ensemble models.