• Title/Summary/Keyword: neural network(NN)

Search Result 372, Processing Time 0.036 seconds

플라즈마 식각공정에서 Radial Basis Function Neural Network Model를 이용한 식각 종료점 검출

  • ShuKun, Zhao;Kim, Min-U;Han, Lee-Seul;Hong, Sang-Jin;Han, Seung-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.262-262
    • /
    • 2010
  • 반도체 제조공정 중 식각공정(Etching)은 웨이퍼표면으로부터 화학적, 물리적으로 불필요한 물질들을 선택적으로 제거하는 방법이다. 식각공정 중 하나인 플라즈마 식각(Plasma etching) 공정에서 오버식각(over-etching) 과언더식각(under-etching) 되는것을피하기위해서통계적인방법을기준으로식각종료점(endpoint)를 결정한다. 본 논문의 목표는 통계적인 분석방법을 이용하지 않고 실시간 식각 데이터(realtime etching data)를 사용해서 식각 종료점을 검출하는 것이다. 식각 데이터는 시계열 데이터(time-series data)이기 때문에 간단한 구조와 적은 계산량으로 빠른 수렴속도와 좋은 안정도를 가진 Radial Basis Function Neural Network's (RBF-NN) 를 이용하여 시계열 모델(time-series model)을 구현 하였다. 광학방사분광기(Optical Emission Spectroscopy: OES)로부터 나온 6개의 데이터 세트중에서 4개의 데이터 세트는 RBF-NN을 학습하는데 사용되고 2개의 데이터 세트는 모델의 성과를 시험해 보기 위하여 사용하였다. 학습을 위한 데이터들은 Matrix화 시켜서 목표값을 설정하여 학습시킨다. 실험한 결과 학습한 RBF-NN 모형이 식각 종료점(endpoint)를 정확하게 검출된다는 것을 보여준다.

  • PDF

Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks

  • Alexandridis, Alex;Stavrakas, Ilias;Stergiopoulos, Charalampos;Hloupis, George;Ninos, Konstantinos;Triantis, Dimos
    • Computers and Concrete
    • /
    • v.16 no.6
    • /
    • pp.919-932
    • /
    • 2015
  • This paper presents a new method for assessing the three-point-bending (3PB) strength of mortar beams in a non-destructive manner, based on neural network (NN) models. The models are based on the radial basis function (RBF) architecture and the fuzzy means algorithm is employed for training, in order to boost the prediction accuracy. Data for training the models were collected based on a series of experiments, where the cement mortar beams were subjected to various bending mechanical loads and the resulting pressure stimulated currents (PSCs) were recorded. The input variables to the NN models were then calculated by describing the PSC relaxation process through a generalization of Boltzmannn-Gibbs statistical physics, known as non-extensive statistical physics (NESP). The NN predictions were evaluated using k-fold cross-validation and new data that were kept independent from training; it can be seen that the proposed method can successfully form the basis of a non-destructive tool for assessing the bending strength. A comparison with a different NN architecture confirms the superiority of the proposed approach.

Speed-Sensorless Vector Control of an Induction Motor Using Neural Network (신경망을 이용한 유도 전동기의 센서리스 속도제어)

  • Kim, Jung-Gon;Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2149-2151
    • /
    • 2002
  • In this paper, a novel speed estimation method of an induction motor using neural networks(NNs) is presented. The NN speed estimator is trained online by using the error backpropagation algorithm, and the training starts simultaneously with the induction motor working. The neural network based vector controller has the advantage of robustness against machine parameter variation. The simulation results using Matlab/Simulink verify the useful of the proposed method.

  • PDF

Quality Control of Two Dimensions Using Digital Image Processing and Neural Networks (디지털 영상처리와 신경망을 이용한 2차원 평면 물체 품질 제어)

  • Kim, Jin-Hwan;Seo, Bo-Hyeok;Park, Seong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2580-2582
    • /
    • 2004
  • In this paper, a Neural Network(NN) based approach for classification of two dimensions images. The proposed algorithm is able to apply in the actual industry. The described diagnostic algorithm is presented to defect surface failures on tiles. A way to get data for a digital image process is several kinds of it. The tiles are scanned and the digital images are preprocessed and classified using neural networks. It is important to reduce the amount of input data with problem specific preprocessing. The auto-associative neural network is used for feature generation and selection while the probabilistic neural network is used for classification. The proposed algorithm is evaluated experimentally using one hundred of the real tile images. Sample image data to preprocess have histogram. The histogram is used as input value of probabilistic neural network. Auto-associative neural network compress input data and compressed data is classified using probabilistic neural network. Classified sample images are determined by human state. So it is intervened human subjectivity. But digital image processing and neural network are better than human classification ability. Therefore it is very useful of quality control improvement.

  • PDF

Near-real time Kp forecasting methods based on neural network and support vector machine

  • Ji, Eun-Young;Moon, Yong-Jae;Park, Jongyeob;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.123.1-123.1
    • /
    • 2012
  • We have compared near-real time Kp forecast models based on neural network (NN) and support vector machine (SVM) algorithms. We consider four models as follows: (1) a NN model using ACE solar wind data; (2) a SVM model using ACE solar wind data; (3) a NN model using ACE solar wind data and preliminary kp values from US ground-based magnetometers; (4) a SVM model using the same input data as model 3. For the comparison of these models, we estimate correlation coefficients and RMS errors between the observed Kp and the predicted Kp. As a result, we found that the model 3 is better than the other models. The values of correlation coefficients and RMS error of the model 3 are 0.93 and 0.48, respectively. For the forecast evaluation of models for geomagnetic storms ($Kp{\geq}6$), we present contingency tables and estimate statistical parameters such as probability of detection yes (PODy), false alarm ratio (FAR), bias, and critical success index (CSI). From a comparison of these statistical parameters, we found that the SVM models (model 2 and model 4) are better than the NN models (model 1 and model 3). The values of PODy and CSI of the model 4 are the highest among these models (PODy: 0.57 and CSI: 0.48). From these results, we suggest that the NN models are better than the SVM models for predicting Kp and the SVM models are better than the NN models for forecasting geomagnetic storms.

  • PDF

Heart Attack Prediction using Neural Network and Different Online Learning Methods

  • Antar, Rayana Khaled;ALotaibi, Shouq Talal;AlGhamdi, Manal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.77-88
    • /
    • 2021
  • Heart Failure represents a critical pathological case that is challenging to predict and discover at an early age, with a notable increase in morbidity and mortality. Machine Learning and Neural Network techniques play a crucial role in predicting heart attacks, diseases and more. These techniques give valuable perspectives for clinicians who may then adjust their diagnosis for each individual patient. This paper evaluated neural network models for heart attacks predictions. Several online learning methods were investigated to automatically and accurately predict heart attacks. The UCI dataset was used in this work to train and evaluate First Order and Second Order Online Learning methods; namely Backpropagation, Delta bar Delta, Levenberg Marquardt and QuickProp learning methods. An optimizer technique was also used to minimize the random noise in the database. A regularization concept was employed to further improve the generalization of the model. Results show that a three layers' NN model with a Backpropagation algorithm and Nadam optimizer achieved a promising accuracy for the heart attach prediction tasks.

Induction Machine Fault Detection Using Generalized Feed Forward Neural Network

  • Ghate, V.N.;Dudul, S.V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • Industrial motors are subject to incipient faults which, if undetected, can lead to motor failure. The necessity of incipient fault detection can be justified by safety and economical reasons. The technology of artificial neural networks has been successfully used to solve the motor incipient fault detection problem. This paper develops inexpensive, reliable, and noninvasive NN based incipient fault detection scheme for small and medium sized induction motors. Detailed design procedure for achieving the optimal NN model and Principal Component Analysis for dimensionality reduction is proposed. Overall thirteen statistical parameters are used as feature space to achieve the desired classification. GFFD NN model is designed and verified for optimal performance in fault identification on experimental data set of custom designed 2 HP, three phase 50 Hz induction motor.

Adaptive Model Predictive Control for SI Engines Fuel Injection System

  • Gu, Qichen;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.3
    • /
    • pp.43-50
    • /
    • 2013
  • This paper presents a model predictive control (MPC) based on a neural network (NN) model for air/fuel ration (AFR) control of automotive engines. The novelty of the paper is that the severe nonlinearity of the engine dynamics are modelled by a NN to a high precision, and adaptation of the NN model can cope with system uncertainty and time varying effects. A single dimensional optimization algorithm is used in the paper to speed up the optimization so that it can be implemented to the engine fast dynamics. Simulations on a widely used mean value engine model (MVEM) demonstrate effectiveness of the developed method.

Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network (RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어)

  • 김은태;이성열
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.

Robust Tracking Control of a Flexible Joint Robot System using a CMAC Neural Network Disturbance Observer (CMAC 신경망 외란관측기를 이용한 유연관절 로봇의 강인 추적제어)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.299-307
    • /
    • 2003
  • The local structure of CMAC neural networks (NN) results in better and faster controllers for nonlinear dynamical systems. In this paper, we propose a CMAC NN-based disturbance observer and its corresponding controller for a flexible joint robot. The CMAC NN-based disturbance observer compensates for the parametric uncertainties and the external disturbances throughout the entire mechanical system. Finally, a simulation result is given to demonstrate the effectiveness of proposed design method's robust tracking performance.