• Title/Summary/Keyword: neural decoding

Search Result 43, Processing Time 0.03 seconds

Real - Time Applications of Video Compression in the Field of Medical Environments

  • K. Siva Kumar;P. Bindhu Madhavi;K. Janaki
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.73-76
    • /
    • 2023
  • We introduce DCNN and DRAE appraoches for compression of medical videos, in order to decrease file size and storage requirements, there is an increasing need for medical video compression nowadays. Using a lossy compression technique, a higher compression ratio can be attained, but information will be lost and possible diagnostic mistakes may follow. The requirement to store medical video in lossless format results from this. The aim of utilizing a lossless compression tool is to maximize compression because the traditional lossless compression technique yields a poor compression ratio. The temporal and spatial redundancy seen in video sequences can be successfully utilized by the proposed DCNN and DRAE encoding. This paper describes the lossless encoding mode and shows how a compression ratio greater than 2 (2:1) can be achieved.

Development of Brain-machine Interface for MindPong using Internet of Things (마인드 퐁 제어를 위한 사물인터넷을 이용하는 뇌-기계 인터페이스 개발)

  • Hoon-Hee Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.17-22
    • /
    • 2023
  • Brain-Machine Interfaces(BMI) are interfaces that control machines by decoding brainwaves, which are electrical signals generated from neural activities. Although BMIs can be applied in various fields, their widespread usage is hindered by the low portability of the hardware required for brainwave measurement and decoding. To address this issue, previous research proposed a brain-machine interface system based on the Internet of Things (IoT) using cloud computing. In this study, we developed and tested an application that uses brainwaves to control the Pong game, demonstrating the real-time usability of the system. The results showed that users of the proposed BMI achieved scores comparable to optimal control artificial intelligence in real-time Pong game matches. Thus, this research suggests that IoT-based brain-machine interfaces can be utilized in a variety of real-time applications in everyday life.

A Neural Network based Block Classifier for High Speed Fractal Image Compression (고속 프랙탈 영상압축을 위한 신경회로망 기반 블록분류기)

  • 이용순;한헌수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.3
    • /
    • pp.179-187
    • /
    • 2000
  • Fractal theory has strengths such as high compression rate and fast decoding time in application to image compression, but it suffers from long comparison time necessary for finding an optimally similar domain block in the encoding stage. This paper proposes a neural network based block classifier which enhances the encoding time significantly by classifying domain blocks into 4 patterns and searching only those blocks having the same pattern with the range block to be encoded. Size of a block is differently determined depending on the image complexity of the block. The proposed algorithm has been tested with three different images having various featrues. The experimental results have shown that the proposed algorithm enhances the compression time by 40% on average compared to the conventional fractal encoding algorithms, while maintaining allowable image qualify of PSNR 30 dB.

  • PDF

Luma Mapping Function Generation Method Using Attention Map of Convolutional Neural Network in Versatile Video Coding Encoder (VVC 인코더에서 합성 곱 신경망의 어텐션 맵을 이용한 휘도 매핑 함수 생성 방법)

  • Kwon, Naseong;Lee, Jongseok;Byeon, Joohyung;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.441-452
    • /
    • 2021
  • In this paper, we propose a method for generating luma signal mapping function to improve the coding efficiency of luma signal mapping methods in LMCS. In this paper, we propose a method to reflect the cognitive and perceptual features by multiplying the attention map of convolutional neural networks on local spatial variance used to reflect local features in the existing LMCS. To evaluate the performance of the proposed method, BD-rate is compared with VTM-12.0 using classes A1, A2, B, C and D of MPEG standard test sequences under AI (All Intra) conditions. As a result of experiments, the proposed method in this paper shows improvement in performance the average of -0.07% for luma components in terms of BD-rate performance compared to VTM-12.0 and encoding/decoding time is almost the same.

Unsupervised Incremental Learning of Associative Cubes with Orthogonal Kernels

  • Kang, Hoon;Ha, Joonsoo;Shin, Jangbeom;Lee, Hong Gi;Wang, Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • An 'associative cube', a class of auto-associative memories, is revisited here, in which training data and hidden orthogonal basis functions such as wavelet packets or Fourier kernels, are combined in the weight cube. This weight cube has hidden units in its depth, represented by a three dimensional cubic structure. We develop an unsupervised incremental learning mechanism based upon the adaptive least squares method. Training data are mapped into orthogonal basis vectors in a least-squares sense by updating the weights which minimize an energy function. Therefore, a prescribed orthogonal kernel is incrementally assigned to an incoming data. Next, we show how a decoding procedure finds the closest one with a competitive network in the hidden layer. As noisy test data are applied to an associative cube, the nearest one among the original training data are restored in an optimal sense. The simulation results confirm robustness of associative cubes even if test data are heavily distorted by various types of noise.

Hybrid CTC-Attention Based End-to-End Speech Recognition Using Korean Grapheme Unit (한국어 자소 기반 Hybrid CTC-Attention End-to-End 음성 인식)

  • Park, Hosung;Lee, Donghyun;Lim, Minkyu;Kang, Yoseb;Oh, Junseok;Seo, Soonshin;Rim, Daniel;Kim, Ji-Hwan
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.453-458
    • /
    • 2018
  • 본 논문은 한국어 자소를 인식 단위로 사용한 hybrid CTC-Attention 모델 기반 end-to-end speech recognition을 제안한다. End-to-end speech recognition은 기존에 사용된 DNN-HMM 기반 음향 모델과 N-gram 기반 언어 모델, WFST를 이용한 decoding network라는 여러 개의 모듈로 이루어진 과정을 하나의 DNN network를 통해 처리하는 방법을 말한다. 본 논문에서는 end-to-end 모델의 출력을 추정하기 위해 자소 단위의 출력구조를 사용한다. 자소 기반으로 네트워크를 구성하는 경우, 추정해야 하는 출력 파라미터의 개수가 11,172개에서 49개로 줄어들어 보다 효율적인 학습이 가능하다. 이를 구현하기 위해, end-to-end 학습에 주로 사용되는 DNN 네트워크 구조인 CTC와 Attention network 모델을 조합하여 end-to-end 모델을 구성하였다. 실험 결과, 음절 오류율 기준 10.05%의 성능을 보였다.

  • PDF

MLSE-Net: Multi-level Semantic Enriched Network for Medical Image Segmentation

  • Di Gai;Heng Luo;Jing He;Pengxiang Su;Zheng Huang;Song Zhang;Zhijun Tu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2458-2482
    • /
    • 2023
  • Medical image segmentation techniques based on convolution neural networks indulge in feature extraction triggering redundancy of parameters and unsatisfactory target localization, which outcomes in less accurate segmentation results to assist doctors in diagnosis. In this paper, we propose a multi-level semantic-rich encoding-decoding network, which consists of a Pooling-Conv-Former (PCFormer) module and a Cbam-Dilated-Transformer (CDT) module. In the PCFormer module, it is used to tackle the issue of parameter explosion in the conservative transformer and to compensate for the feature loss in the down-sampling process. In the CDT module, the Cbam attention module is adopted to highlight the feature regions by blending the intersection of attention mechanisms implicitly, and the Dilated convolution-Concat (DCC) module is designed as a parallel concatenation of multiple atrous convolution blocks to display the expanded perceptual field explicitly. In addition, MultiHead Attention-DwConv-Transformer (MDTransformer) module is utilized to evidently distinguish the target region from the background region. Extensive experiments on medical image segmentation from Glas, SIIM-ACR, ISIC and LGG demonstrated that our proposed network outperforms existing advanced methods in terms of both objective evaluation and subjective visual performance.

Neuromorphic Sensory Cognition-Focused on Touch and Smell (뉴로모픽 감각 인지 기술 동향 - 촉각, 후각을 중심으로)

  • K.-H. Park;H.-K. Lee;Y. Kang;D. Kim;J.W. Lim;C.H. Je;J. Yun;J.-Y. Kim;S.Q. Lee
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.62-74
    • /
    • 2023
  • In response to diverse external stimuli, sensory receptors generate spiking nerve signals. These generated signals are transmitted to the brain along the neural pathway to advance to the stage of recognition or perception, and then they reach the area of discrimination or judgment for remembering, assessing, and processing incoming information. We review research trends in neuromorphic sensory perception technology inspired by biological sensory perception functions. Among the various senses, we consider sensory nerve decoding technology based on sensory nerve pathways focusing on touch and smell, neuromorphic synapse elements that mimic biological neurons and synapses, and neuromorphic processors. Neuromorphic sensory devices, neuromorphic synapses, and artificial sensory memory devices that integrate storage components are being actively studied. However, various problems remain to be solved, such as learning methods to implement cognitive functions beyond simple detection. Considering applications such as virtual reality, medical welfare, neuroscience, and cranial nerve interfaces, neuromorphic sensory recognition technology is expected to be actively developed based on new technologies, including combinatorial neurocognitive cell technology.

MPEG Video Segmentation using Two-stage Neural Networks and Hierarchical Frame Search (2단계 신경망과 계층적 프레임 탐색 방법을 이용한 MPEG 비디오 분할)

  • Kim, Joo-Min;Choi, Yeong-Woo;Chung, Ku-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.114-125
    • /
    • 2002
  • In this paper, we are proposing a hierarchical segmentation method that first segments the video data into units of shots by detecting cut and dissolve, and then decides types of camera operations or object movements in each shot. In our previous work[1], each picture group is divided into one of the three detailed categories, Shot(in case of scene change), Move(in case of camera operation or object movement) and Static(in case of almost no change between images), by analysing DC(Direct Current) component of I(Intra) frame. In this process, we have designed two-stage hierarchical neural network with inputs of various multiple features combined. Then, the system detects the accurate shot position, types of camera operations or object movements by searching P(Predicted), B(Bi-directional) frames of the current picture group selectively and hierarchically. Also, the statistical distributions of macro block types in P or B frames are used for the accurate detection of cut position, and another neural network with inputs of macro block types and motion vectors method can reduce the processing time by using only DC coefficients of I frames without decoding and by searching P, B frames selectively and hierarchically. The proposed method classified the picture groups in the accuracy of 93.9-100.0% and the cuts in the accuracy of 96.1-100.0% with three different together is used to detect dissolve, types of camera operations and object movements. The proposed types of video data. Also, it classified the types of camera movements or object movements in the accuracy of 90.13% and 89.28% with two different types of video data.

Automatic Text Summarization based on Selective Copy mechanism against for Addressing OOV (미등록 어휘에 대한 선택적 복사를 적용한 문서 자동요약)

  • Lee, Tae-Seok;Seon, Choong-Nyoung;Jung, Youngim;Kang, Seung-Shik
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.58-65
    • /
    • 2019
  • Automatic text summarization is a process of shortening a text document by either extraction or abstraction. The abstraction approach inspired by deep learning methods scaling to a large amount of document is applied in recent work. Abstractive text summarization involves utilizing pre-generated word embedding information. Low-frequent but salient words such as terminologies are seldom included to dictionaries, that are so called, out-of-vocabulary(OOV) problems. OOV deteriorates the performance of Encoder-Decoder model in neural network. In order to address OOV words in abstractive text summarization, we propose a copy mechanism to facilitate copying new words in the target document and generating summary sentences. Different from the previous studies, the proposed approach combines accurate pointing information and selective copy mechanism based on bidirectional RNN and bidirectional LSTM. In addition, neural network gate model to estimate the generation probability and the loss function to optimize the entire abstraction model has been applied. The dataset has been constructed from the collection of abstractions and titles of journal articles. Experimental results demonstrate that both ROUGE-1 (based on word recall) and ROUGE-L (employed longest common subsequence) of the proposed Encoding-Decoding model have been improved to 47.01 and 29.55, respectively.