• 제목/요약/키워드: neural controller

검색결과 1,264건 처리시간 0.024초

A tracking controller using multi-layered neural networks

  • Bae, Byeong-Woo;Jeon, Gi-Joon;Kim, Kyung-Youn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.56-60
    • /
    • 1992
  • This paper addresses the problem of designing a neural network based controller for a discrete-time nonlinear dynamical system. Using two multi-layered neural networks we first design an indirect controller the weights of which are updated by the informations obtained from system identification. The weight update is executed by parameter optimization method under Lagrangian formulation. For the nonlinear dynamical system, we define several cost functions and by computer simulations analyze the control performances of them and the effects of penalty-weighting values.

  • PDF

하이브리드형 신경망을 이용한 ATM망에서의 호 수락제어에 관한 연구 (Study on Call Admission Control in ATM Networks Using a Hybrid Neural Network.)

  • 김성진;서현승;백종일;김영철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.94-97
    • /
    • 1999
  • In this paper, a new real-time neural network connection admission controller is proposed. The proposed controller measures traffic flows, cell loss rate and cell delay periodically each classes. The Neural network learns the relation between those measured information and service quality by real-time. Also the proposed controller uses the DWRR multiplexer with buffer dedicated to every traffic source in order to measure the delay that cells experience in buffer. Experimental result shows that the proposed method can control effectively heterogeneous traffic sources with diverse QoS requirement.

  • PDF

Redundant 매니퓰레이터의 force 제어를 위한 신경 회로망 제어기 (Force Controller of the Redundant Manipulator using Seural Network)

  • 이기응;조현찬;전홍태;이홍기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.13-17
    • /
    • 1990
  • In this paper we propose the force controller using a neural network for a redundant manipulator. Jacobian transpose matrix of a redundant manipulator constructed by a neural network is trained by using a feedback torque as an error signal. If the neural network is sufficiently trained well, the kinematic inaccuracy of a manipulator is automatically compensated. The effectiveness of the proposed controller is demonstrated by computer simulation using a three-link planar robot.

  • PDF

신경 회로망을 이용한 로보트 매니퓰레이터의 Hybrid 위치/힘 제어기의 설계 (Hybrid position/force controller design of the robot manipulator using neural network)

  • 조현찬;전홍태;이홍기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.24-29
    • /
    • 1990
  • In this paper ,ie propose a hybrid position/force controller of a robot manipulator using double-layer neural network. Each layer is constructed from inverse dynamics and Jacobian transpose matrix, respectively. The weighting value of each neuron is trained by using a feedback force as an error signal. If the neural networks are sufficiently trained it does not require the feedback-loop with error signals. The effectiveness of the proposed hybrid position/force controller is demonstrated by computer simulation using a PUMA 560 manipulator.

  • PDF

신경망을 이용한 Banyan 네트워크 컨트롤러의 하드웨어 구현 (Implementation of Banyan Network Controller by Using Neural Networks)

  • 윤인철;정덕진
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.861-865
    • /
    • 1994
  • By using Neural Networks, a 8$\times$8 Banyan network controller is designed and implemented. In order to solve internal blocking and output blocking, Winner-Take-All method is used. The longer queue takes higher priority. First-in-first-out method is used among the non-blocking cells in the queue selected.The required time to select a cell is 2.7 $\mu$sec for 155Mbps. The implemented controller using Xilinx FPGA chip selects cells within 2.5$\mu$sec.

  • PDF

신경회로망을 이용한 기준모델 제어기에 관한 연구 (A study on the model reference adaptive control using neural network)

  • 조규상;김규남;양태진;유시영;김경기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.243-247
    • /
    • 1992
  • This paper describes a neural network based control scheme with MRAC. The system consists of two neural network; one is for identifier and the other is for controller. Identification is firstly performed to learn the behavior of the nonlinear plant. Neural net controller is next trained by backpropagating the error at the output of plant through the identifier. Also the training method used in this paper repeatedly updates weights of neural network to track the reference model.

  • PDF

신경회로망을 이용한 로보트 매니츌레이터의 Resolved Motion제어기의 설계 (Resolved Motion Control of the Robot Manipulator using Neural Network)

  • 송문철;조현찬;이홍기;전홍태
    • 대한전기학회논문지
    • /
    • 제39권5호
    • /
    • pp.519-526
    • /
    • 1990
  • In this paper we propose the resolved motion controller using a neural network for a robot manipulator. Neural identifier designed by a neural network is trained by using a feedback force as an error signal. The identifier approximates the output of a unknown nonlinear system by monitoring both the input and the output of this system. If the neural network is sufficiently trained well, it does not require either strict modelling of the manipulator or precise parameter estimation. The effectiveness of the proposed controller is demonstrated by computer simulation using a two-link planar robot.

  • PDF

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

인공 신경망 제어기에 의한 생물공정에서 암모니아 농도의 제어

  • 이종일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.173-176
    • /
    • 2000
  • A neural network based controller (NN controller) was studied for the control of ammonia concentrations in biological processes. An ammonia FIA has been employed to on-line monitor the concentrations of ammonia in a bioreactor. The optimal neural network structure was investigated by computer simulation and found to be a 3(inputlayer)-2(hidden layer)-1(output layer). The NN controller had advantage over the PID controller, even though the former is more time consuming. The 3-2-1 NN controller has been used to control the ammonia concentrations in a simulated bioprocess and also in a real cultivation process of yeast, and its performance were investigated.

  • PDF

Torque Ripples Minimization of DTC IPMSM Drive for the EV Propulsion System using a Neural Network

  • Singh, Bhim;Jain, Pradeep;Mittal, A.P.;Gupta, J.R.P.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.23-34
    • /
    • 2008
  • This paper deals with a Direct Torque Control (DTC) of an Interior Permanent Magnet Synchronous Motor (IPMSM) for the Electric Vehicle (EV) propulsion system using a Neural Network (NN). The Conventional DTC with optimized switching lookup table and three level torque controller generates relatively large torque ripples in an electric vehicle motor drive. For reducing the torque ripples, a three level torque controller is hereby replaced by the five level torque controller. Furthermore, the switching lookup table of the five level torque controller based DTC is replaced with a Neural Network. These DTC schemes of an IPMSM drive are simulated using MATLAB/SIMULINK. The simulated results are compared with the conventional DTC and it is found that the ripples in the torque, as well as in the stator current, are reduced drastically.