'92 KACC 1992, 10. 19~ 21

A Tracking Controller Using Multi-layered Neural Networks
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Abstract
This paper addresses the problem of designing a

neural network based controller for a discrete-time
nonlinear dynamical system. Using two multi-layered neural
first design an the
weights of which are updated by the informations obtained
from system identification. The weight update is executed
by method

formulation. For the nonlinear dynamical system, we define

networks we indirect controller

parameter optimization under Lagrangian
several cost functions and by computer simulations analyze

the control performances of them and the effects of

penal ty-weighting values.

1. Introduction

Neural networks have been used for the design of
control systems since they have potential to treat many
problems that cannot be handled by conventional analytic
approaches. A multi-layered neural network using back-
propgation learning algorithm is the most prevalent neural
network topology for control applications because they
have the capability to learn system charateristics through
nonlinear mapping[1].

Recently, the application of neural network to the
control system design has tendencies to integrate linear
control techniques and neural network

[2-3],

system embedded in neural networks[4-5],

learning methods

to utilize the input/output information of the

and to autotune

the parameters for training of the neural network, i.e.,

the shape of the activation function[6],

In real industial processes it is important to

consider the control scheme with constrained control

input,
restrictions on control

However, many studies[2,4-8] have ignored some

efforts such as control energy,

control rates and control bounds etc,, There have been

some studies on solving the regulator and tracking

problems: [liguni et al.[3] have presented the optimal
cost
the

analyses(or comparisons) on such performance indices as

regulator realized by minimizing a quadratic

function which includes a energy term. However,
transient response, steady-state error and control energy
have not been shown. Nguyen et al.[7] have presented that

their self-learning control system with a neural emulator
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can be realized by minimizing a quadratic cost function
involving the control energy as well as the final state
Troudet et al.[8]
learning the neural controller by minimizing an objective

error, have proposed a method of
function which is a weighted sum of tracking erorrs and
control inputs.

In this paper we propose an effective method that
designs an indirect controller using two multi-layered
networks{MLNN), the
other for control, with backpropagation learning archi-
The former is trained so that the MLNN has the
system to be

neural one for identification and
tecture,
chracteristics of a nonlinear dynamical
controlled, and the latter obatains the control input from
Lagrangian formulation[9-10] with a given cost function
Furthermore, before

and some constraints, investigating

the performace of the control system with the control
method represented, we define several cost functions and
compare the control performance not only by the types of
cost functions but also in terms of the penalty-weighting
values, Some computer simulations show the efficiency of

the proposed control method,

2. Optimization Problem of Nonlinear Control Systems

2.1 Problem Formulation

Consider a discrete-time nonlinear dynamical system:

(1)
(2)

x(k+1) = &(x(k),u(k))
y(k) = ¥(x(k))

vhere x(k)E,RP and y(k)E=R" are the state vector and the
mearsured output vector of the system, respectively, and
u(k)ERm is the control input vector. ¢ and ¥ are the

nonlinear functions that describe the charateristics of
the system,

When the model of a real process is given as linear
equations, it is currently well established to find the

optimal control input which minimizes a cost function

similar to the following form:

K
5= 7,3 vtk D)y (kel))Talya (ke 1)y (ko)

+ u(k)TRu(k)}



where yd(k+1)ERn is the desired output vector of the
system, and Q and R, the symmetric positive definite
penalty-weighting matrices of the output vector and the
input vector, are generally chosen with regard to the
physical conditions,

On unknown nonlinear dynamical systems, however, it
is difficult not only to obtain the model of the system
but to derive the optimal control input satisfying a
system objective, In this paper we use neural networks to
obtain control input which minimizes a cost function
subject to system equations, (1) and (2)

2.2 System Identification Scheme

In this section, since a system to be controlled is
assumed to be unknown and nonlinear, a neural network
based indentifier is developed for the solution of the
problem stated in the last section. To find the dynamic
charateristics or the parameters of the system, we use an
MLNN with no inner feedback loop, which will be called NNI
and is shown in Fig. 1. The inputs of the MLNN consist of
the delayed system output vector and the control input
vector, The training signals(signal vector) for updating
the weights of the MLNN are errors(error vector) between
the system output vector as desired values and the MLNN
output vector as actual values

The output vector of the NNI is described as follows:

Y1) & 2
£(y(k), u(k)) (4)

where f(-) and 2z(k,T) denote the input/output mapping
function and node output vector of the last layer of the
NNI, respectively.
The node output vector of each layer is
z{t) = fe(s(k,t))
fe(W(k, t),z(k,t-1)) V¥V te[l, T] (5)

vhere fi¢(.) denotes an activation function which is a
sigmoid function type in the t-th hidden layer. And,
s(k,t) and z(k,t) represent the activation value and node
output vector of the t-th layer, respectively. W(k,t) is
the weight matrix between the (t-1)th and t-th layer in
the time k. For simplicity, the (k,t) term of the above
notations is denoted to (t). In case t=0, z(t) is defined
to be the input vectors, y(k) and u(k)

¥hen the error cost function for system identification
is given as the following form

Ji = By (kr1)y(kel})T(y(k+1) y(k+1))} (6)

the method how to minimize (6) can simply be summerized by
the BP learning algorithm[l1] with the steepest descent
technique to update the weights of the MLNN.
W(k+l, t) = W(t) + AWy Vo otell, T) (7)
where,
AW(t) = §(t)z(t-1) + a AW(k-1,t) WV te[l, T (8)

- 92T(T) (ks
8(T) = W(T) (y(k+1)-y(k+1)) (9)

2zT(t)
aw(t)

8(t) = 8(t+1)¥(t«1) V¥ te[1, T-1) (10)

and n is a step size and a is a momentum term.
2.3 Control Scheme

With the nueral indentifier developed in the last
section, we find the control input which minimizes the
cost function similar to (3). The cost function need to be
chosen in such a way that several conditions be
satisfied: the realization of a system objective, the
uniformly bounded control input, the minimization of
control energy, the lower control rates, etc.. To solve
the above probiem, we later define the cost function and
the parameters of it

In this section, for simplicity we consider the cost
function without a control energy term as follows:

Je = (yalkrD)-y(k+1)) (ya(ke1)-y(ke1)). (an

Based on the Lagrangian formulism, the gquestion to find

the control input that minimizes the cost function is a

parameter optimization problem by gradient method with

equality constraints:
ze(t) = felsc(t))

fe(V(t),zc(t-1)) (12)

Under the assumption that the system output vector is
equivalent to the NNI output vector, the Lagrange function
is defined as follows:

L{zct), V(k, t),A(1)) a (k1) -y(k+1))T (ya(ke1)-y(k+1))
T
A

= (y
£ (0 (2O felsel), (13)

In the below, notations are summerized with illustra-
tion of an MLNN for controller(NNC). The NNC is the same
structure as Fig. 1. The output vector and input vectors
of the NNC is u(k), yd(k+l) and y{k), respectively, The
weight matrix and output vector in the last section are
represented by V(t) and zc(t), respectively. Fig. 2 shows
the overall structure of the NNC and the NNI,

In (12) and Fig. 2, A(t) denotes a Lagrange multiplier
vector of the t-th layer and it may be recognized as the
back-propagated gradient term, 1f we consider the optimi-
zation problem of the cost function (13), Vi{zc,V,1)=0 is
a necessary condition which gives a local minimum of the
cost function with respect to the staticnary point. And
the condition is split into three subconditions:

al{ze(t), V(t),A(t))

aA(t) " e

Aizelt) V() M) _ (140)
azc(t)

ALlze(r) V(t) A(H) (14c)

av(t)



From (14a), the state vector 2.(t) is given as the
forward dynamic equation
zc(t) = felsc(t)) V te[l, T (15)

From (14b), the costate vector A{t) is given as the
backward dynamic equation

9zcT(t+1)

sy M)

At) = v te[l, T-1) (16)

with boundary condition which can be obtained as mapping
the NNI output vector to the NNC output vector by the
partial derivative and chain rule,

A(T) = D(T) (ya(k+1)-y(k+1)) an
where
_oTnt az(t+1) as(t+l) .1
B =21 (S5 2200 18

From (14c), the gradient is used to compute the

steepest descent for the weight update, i.e.,
f(s(t)) A(t) zc(t-1)

AV(t) = n ¥ v te(l, T] (19)

Vit)
and

V(t+l) = V(1) + aV(t) (20)
where n is step size. We repeat this procedure until the
change in the cost function

T
aL(zc(t).V(t).A(t))] aL{ze(t),V(t),A(t)) (21)

9=
[ av(t) av(t)
is smaller than some particular pre-chosen small number

depending mainly on the accuracy of the control
performance required,

Although the last condition (14c) is the problem of
the weight parameter optimization, we can derive the
optimal control based on cost function when this condition
is satisfied. This can be shown to be equivalent to
finding a minimum of Lagrangian function while satisfying
the first two subconditions, (14a) and (14b).

The constrained optimization procedure described
untill now is summerized as follows:

i) identify the system to be controlled

ii) solve the state and costate vector that satisfy
the first two necessary conditions

iii ) compute the weight matrices using the state and
costate vector

Before investigating the the
we define several cost func-
tions corresponding to (3) or (11) and compare the control
performances not only by the types of cost functions but

also in terms of the selection of the penalty-weighting

system performace of
control method represented,

matrices,

Type A:

Je = (ya(k+1)-y(k+1))TQ(ya(k+1)-y(k+1)) (22)

Type B:
Jo = {ya(k+1)-y(k+1))TQya(k+1)-y(k+1)) + u(k)TRu(k) (23)

AR

Type C:
Je = (ya(k+1)}-y(k+1)TQ(ya(k+1)-y{k+1))
+ u(k)TRu(k) + su(k)TPAu(k)} (24)
Type D:
Jo = (ya(ke1)-3{(k+1))TQ(ya(k+1)-y(k+1))
+ u(l)TRu(k) + Au(k)TPAulk) (25)
Type A has been widely used in the studies of a

control system using a neural network, From the viewpoint

of control efforts, however, the cost fuction need to be
modified because controller may excessively supply control
input for the system, Type B consists of penalty terms on
both the control energy and the trajectory. In Type C, Au
represents control input incrementants of which need to be
kept in minimum in real control systems. When the dynamic
equal to that of the
the NNI results in a
the

of Type D can be

characteristics of the system is not
NNI,
poor system performance,

the control input derived from

To treat such a problem,

quasi-squared-error cost function
employed.
The boundary conditions of the types of cost functions

defined above are obtained as follows:

Type B : A(T) = D(T)(ya(k+1)-y(k+1}) + Ru(k) (26)
Type € : A(T) = D(T)(ya(k+1)-y(k+1)) + Ru(k) + Pau(k) (27)
Type D @ A{(T) = D(T){yd(k+1)-y(k+1)) + Ru(k) + PAu(k) (28)

The penalty-weighting matrices of the boundary condi-
tions are determined by the physical characteristics and
the objective of the system. This paper will analyze their
influences by simulations only.

3. Simulations and Discussions

It is assumed that the system to be controlled is
given as the SISO plant of the form

_u(k)y(k)
y(k+l) = T 200

+ u3(k)

where the output is a nonlinear function of the input and
the past output, This plant is to be controlled so as to
track a sine wave followed by a square wave as shown in
Fig. 3(a).
the values between -1 and

The bound of control input was contrained by
+1. MLNN's for indetification
and control are two-layered MLNN with two inputs and one
output. With the weights initialized at random, each MLNN
was learned by on-line and concurrently run the plant so
as to minimize each cost function defined in the last
section.

The output responses during training on-line are
shown in Fig, 3 and Fig. 4, and these figures show the
results from the control input acquired using Type D cost
function without penalty-weighting on the input and the
increment of the input and Type A, respectively,

Fig. 5 and Fig. 6 show the

weighting when Type B and C is used as a cost function.

effects of the penalty-

From the results, we could recognize that Fig. 6 shows a
better transient response than Fig. 5.



4. Conclusions

Using two multi-layered neural networks we have
designed an indirect controller the weights of which were
updated by the informations obtained from system identi-
fication, The weight update was executed by parameter
optimization method under Lagrangian formulation, For the
nonlinear dynamical system, we have also defined several
cost functions and analyzed the control performances of
them and the effects of penalty-weighting values by
computer simulations. It is noted from the simulation
results that the output response with the quasi-squared-
error cost function is much improved than the response
with the conventional squared-error cost function,
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Fig. 3. Input and output response of Type D
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Fig. 4. Input and output response of Type C
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