• 제목/요약/키워드: neural controller

검색결과 1,264건 처리시간 0.022초

역동역학 뉴로제어기를 이용한 전력계통 안정화 장치 (Power System Stabilizer using Inverse Dynamic Neuro Controller)

  • 부창진;김문찬;김호찬;고희상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2188-2190
    • /
    • 2004
  • This paper presents an implementation of power system stabilizer using inverse dynamic neuro controller. Traditionally, mutilayer neural network is used for a universal approximator and applied to a system as a neuro-controller. In this case, at least two neural networks are used and continuous tuning of neuro-controller is required. Moreover, training of neural network is required considering all possible disturbances, which is impractical in real situation. In this paper, Taylor Model Based Inverse Dynamic Neuro Model (TMBIDNM) is introduced to avoid this problem. Inverse Dynamic Neuro Controller (IDNC) consists of TMBIDNM and Error Reduction Neuro Model (ERNM). Once the TMBIDNM is trained, it does not require retuning for cases with other types of disturbances. The controller is tested for one machine and infinite-bus power system for various operating conditions.

  • PDF

신경회로망 보상기를 이용하는 슬라이딩 모드 제어기 설계 (Design of a sliding Mode Controller Using a Neural Compensator)

  • 이민호;정순기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.256-262
    • /
    • 2000
  • This paper proposes a new sliding mode controller combined with a multi-layer neural network using the error back propagation learning algorithm,, The network acts as a compensator of the conventional sliding mode controller to improve the control performance when initial assumptions of uncertainty bounds of system parameters are violated. The proposed controller can reduce th steady state error of conventional sliding mode controller with the boundary layer technique Computer simulation results show that the proposed method is effective to control dynamic systems with unexpectably large uncertainties.

  • PDF

자코비안을 이용한 최적의 신경망 제어기 설계 (Optimal Neural Network Controller Design using Jacobian)

  • 임윤규;정병묵;조지승
    • 한국정밀공학회지
    • /
    • 제20권2호
    • /
    • pp.85-93
    • /
    • 2003
  • Generally, it is very difficult to get a modeling equation because multi-variable system has coupling relations between its inputs and outputs. To design an optimal controller without the modeling equation, this paper proposes a neural-network (NN) controller being learned by Jacobian matrix. Another major characteristic is that the controller consists of two separated NN controllers, namely, proportional control part and derivative control part. Simulation results for a catamaran system show that the proposed NN controller is superior to LQR in the regulation and tracking problems.

계통의 안정성을 고려한 비선형 FACTS 신경망 제어기설계 (Design of Nonlinear FACTS Controller with Neural Networks for Power System Stabilization)

  • 박성욱;서보혁
    • 전기학회논문지P
    • /
    • 제51권4호
    • /
    • pp.211-218
    • /
    • 2002
  • We propose a intelligent controller for FACTS device to stabilize a power system. In order to identify the nonlinear characteristics of the power system and to estimate a control signal, an artificial neural network is utilized. Parameter and location of Unified Power Flow Controller(UPFC) on power system operating conditions are discussed. A UPFC is composed of an excitation transformer, a boosting, two three-phase GTO based voltage source converters, and a dc link capacitor. The proposed controller is applied to UPFC to verified the effectiveness of the proposed control system. The results show that the proposed nonlinear FACTS controller is able to enhance the transient stability of a three machine and nine bus system.

Evolution Strategy와 신경회로망에 의한 로봇의 가변PID 제어기 (A Variable PID Controller for Robots using Evolution Strategy and Neural Network)

  • 최상구;김현식;박진현;최영규
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.1014-1021
    • /
    • 1999
  • PID controllers with constant gains have been widely used in various control systems. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a variable PID controller for robot manipulators. We divide total workspace of manipulators into several subspaces. PID controllers in each subspace are optimized using evolution strategy which is a kind of global search algorithm. In real operation, the desired trajectories may cross several subspaces and we select the corresponding gains in each subspace. The gains may have large difference on the boundary of subspaces, which may cause oscillatory motion. So we use artificial neural network to have continuous smooth gain curves to reduce the oscillatory motion. From the experimental results, although the proposed variable PID controller for robots should pay for some computational burden, we have found that the controller is more superior to the conventional constant gain PID controller.

  • PDF

DC서보계에서 2층신경망을 이용한 확대 PID 제어기 (Expanded PID Controller Using Double-Layers Neural Network In DC Servo System)

  • 이정민;하홍곤
    • 융합신호처리학회논문지
    • /
    • 제2권1호
    • /
    • pp.88-94
    • /
    • 2001
  • In the position control system, the output of a controller is generally used as the input of a plant but the undesired noise is included in the output of a controller. Therefore, there is a need to use a precompensator for rejecting the undesired noise. In this paper, the expanded PID controller with a precompensator is constructed. The precompensator and PID controller are designed by a neural network with two-hidden layer and these coefficients are changed automatically to be a desired response of system when the response characteristic is changed under a condition.

  • PDF

신경망을 이용한 차동조향 이동로봇의 추적제어

  • 계중읍;김무진;이영진;이만형
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.90-101
    • /
    • 2000
  • In this paper, we propose a controller for differentially steered wheeled mobile robots. The controller uses input-output linearization algorithm and artificial neural network to stabilize the dynamic model and compensate uncertainties. The proposed neural network part has 6 inputs, 1 hidden layer, 2 torque outputs and features fast online learning and good performance on structure error learning basis. Simulation results show that the proposed controller perform precisely tracking of reference path and is robust to uncertainties.

  • PDF

자기 조정맵을 갖는 퍼지-뉴럴 제어기의 설계 (On design of the fuzzy neural controller with a self-organizing map)

  • 김성현;조현찬;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.408-411
    • /
    • 1993
  • In this paper, we propose the Fuzzy Neural Controller with a Self-Organizing Map based on the fuzzy relation neuron. The fuzzy ndes expressing the input-output relation of the system are obtained by using the fuzzy relation neuron and updated automatically by means of the generalized delta rule. Also, the proposed method has a capability to express the knowledge acquired from the input-output data in form of fuzzy inferences rules. The learning algorithm of this fuzzy relation neuron is described. The effectiveness of the proposed fuzzy neural controller is illustrated by applying it to a number of test data sets.

  • PDF

퍼지-뉴럴 제어기를 이용한 스위치드 리럭턴스 전동기의 속도 제어에 관한 연구 (A Study on the Speed Control of Switched Reluctance Motor Using)

  • 박지호;김건우;김연충;원충연;김창림;최경호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 연구회 합동 학술발표회 논문집
    • /
    • pp.1-4
    • /
    • 1998
  • In this paper, an auto-tuning method for fuzzy controller based on the neural network is presented. The backpropagated error of neural emulator offers the path which reforms the fuzzy controller's membership functions and fuzzy rule, and used for speed control of switched reluctance motor. The experiments are performed to verify the capability of proposed control method on 6/4 salient type SRM. The results show that fuzzy-neural controller is suitable for wide speed range.

  • PDF

Neural Network를 이용한 제어기 설계 (Design of Controller Utilizing Neural-Network)

  • 김대종;구영모;장석호;우광방
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.397-400
    • /
    • 1989
  • This study is to design a method of parameter estimation for a second order linear time invarient system of self-tuning controller utilizing the neural network theory proposed by Hopfield. The result is compared with the other methods which are commonly used in controller theories.

  • PDF