• Title/Summary/Keyword: neural controller

Search Result 1,264, Processing Time 0.02 seconds

A study on the Adaptive Neural Controller with Chaotic Neural Networks (카오틱 신경망을 이용한 적응제어에 관한 연구)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 2003
  • This paper presents an indirect adaptive neuro controller using modified chaotic neural networks(MCNN) for nonlinear dynamic system. A modified chaotic neural networks model is presented for simplifying the traditional chaotic neural networks and enforcing dynamic characteristics. A new Dynamic Backpropagation learning method is also developed. The proposed MCNN paradigm is applied to the system identification of a MIMO system and the indirect adaptive neuro controller. The simulation results show good performances, since the MCNN has robust adaptability to nonlinear dynamic system.

  • PDF

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, S.J
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks (신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어)

  • Oh, Se-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

Adaptive Neural Control of Nonlinear Pure-feedback Systems (완전궤환 비선형 계통에 대한 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Chang, Young-Hak
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.182-189
    • /
    • 2010
  • A new Adaptive neural state-feedback controller for the fully nonaffine pure-feedback nonlinear system are presented in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controller requires no backstepping design procedure. Avoiding backstepping makes the controller structure and stability analysis considerably simple. The proposed controller employs only one neural network to approximate unknown ideal controllers, which highlights the simplicity of the proposed neural controller. Simulation examples demonstrate the efficiency and performance of the proposed approach.

A Study on the Speed Control of Induction Motor using a PID Controller and Neural Network Controller (PID제어기와 신경회로망 제어기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1993-1997
    • /
    • 2009
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simulation.

The Intelligent Controller for Biped Robot Using Neural Network (이족로봇용 신경망 지능 제어기)

  • 김성주;김용택;고재양;서재용;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2573-2576
    • /
    • 2003
  • This paper proposes the controller for biped robot using intelligent control algorithm. The main purpose of this paper is to design the robot controller using Hierarchical Mixture of Experts(HME). The neural network direct control method will be applied to the control scheme for the biped robot and neural network will learn the dynamics of biped robot. The teaming scheme using a intelligent controller to biped robot is developed. The teaming scheme uses a HME controller combined with a inverse biped robot model. The controller provides the control signals at each control time instant. Simulation results are reported for a seven-link biped robot.

  • PDF

Adaptive control based on nonlinear dynamical system

  • Sugisaka, Masanori;Eguchi, Katsumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.401-405
    • /
    • 1993
  • This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.

  • PDF

High Performance Control of IPMSM using NNPI Controller (NNPI 제어기를 이용한 IPMSM의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Kil-Bong;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.53-55
    • /
    • 2006
  • This paper presents self tuning PI controller of IPMSM drive using neural network. NNPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Modified Neural Network-based Self-Tuning Fuzzy PID Controller for Induction Motor Speed Control (유도전동기 속도제어를 위한 개선된 신경회로망 기반 자기동조 퍼지 PID 제어기 설계)

  • Kim, Sang-Min;Han, Woo-Yong;Lee, Chang-Goo;Lee, Gong-Hee;Im, Jeong-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1182-1184
    • /
    • 2001
  • This paper presents a neural network based self-tuning fuzzy PID control scheme for induction motor speed control. The PID controller is being widely used in industrial applications. When continuously used long time, the electric and mechanical parameters of induction motor change, degrading the performance of PID controller considerably. This paper re-analyzes the fuzzy controller as conventional PID controller structure, and proposes a neural network based self-tuning fuzzy PID controller whose scaling factors are adjusted automatically. Proposed scheme is simple in structure and computational burden is small. The simulation using Matlab/Simulink is performed to verify the effectiveness of the proposed scheme.

  • PDF

Real-Time Control of Variable Load DC Servo Motor Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Chung, In-Suk;Hong, Sung-Woo;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.782-784
    • /
    • 1999
  • This paper deals with speed control of DC-servo motor using a Back-Propagation(BP) Learning Algorism and a PID controller Conventionally in the industrial control, PID controller has been used. But the PID controller produced suitable parameter of each system and also variable of PID controller should be changed enviroment, disturbance, load. So this paper revealed for experimental, a neural network and a PID controller combined system using developed speed characters of a Variable Load DC-servo motor. The parameters of the plant are determined by neural network perform on on-line system after training the neural network on off-line system.

  • PDF