• 제목/요약/키워드: neural controller

검색결과 1,264건 처리시간 0.024초

신경망을 이용한 선박용 자동조타장치의 제어시스템 설계 (II) (Design of Neural-Network Based Autopilot Control System(II))

  • 곽문규;서상현
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.19-26
    • /
    • 1997
  • 본 논문에서는 신경망을 이용한 선박자동조타장치의 개발에 관한 연구결과를 소개한다. 앞의 논문에서 소개된 Back-Propagation 알고리즘을 이용하여 선박의 자동운항을 위한 자동제어방법을 개발하였으며 그 결과 기준모델추구신경망제어기와 순간최적제어기를 설계하였다. 기준모델추구신경망제어기는 선수각과 선수각속도가 주어진 기준모델을 추구하도록 타각을 제어하도록 하였으며, 순간최적제어기는 현 상태에서 다음상태로의 천이를 최적화하도록 하였다. 신경망에 근거한 이들 제어기법을 간단한 선박조종수치모델에 적용한 결과 그 효용성을 확인할 수 있었다.

  • PDF

피드백 오차 학습 신경회로망을 이용한 하드디스크 서보정보 기록 방식 (Servo-Writing Method using Feedback Error Learning Neural Networks for HDD)

  • 김수환;정정주;심준석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.699-701
    • /
    • 2004
  • This paper proposes the algorithm of servo- writing based on feedback error learning neural networks. The controller consists of feedback controller using PID and feedforward controller using gaussian radial basis function network. Because the RBFNs are trained by on-line rule, the controller has adaptation capability. The performance of the proposed controller is compared to that of conventional PID controller. Proposed algorithm shows better performance than PID controller.

  • PDF

레이저 센서 기반의 Cascaded 제어기 및 신경회로망을 이용한 이동로봇의 위치 추종 실험적 연구 (Experimental Studies of a Cascaded Controller with a Neural Network for Position Tracking Control of a Mobile Robot Based on a Laser Sensor)

  • 장평수;장은수;전상운;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.625-633
    • /
    • 2004
  • In this paper, position control of a car-like mobile robot using a neural network is presented. positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as a reference, the robot posture is corrected by a cascaded controller. To improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The neural network functions as a compensator to minimize the positional errors in on-line fashion. A car-like mobile robot is built as a test-bed and experimental studies of several controllers are conducted and compared. Experimental results show that the best position control performance can be achieved by a cascaded controller with a neural network.

Fuzzy-Neuro Controller for Speed of Slip Energy Recovery and Active Power Filter Compensator

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.480-480
    • /
    • 2000
  • In this paper, we proposed a fuzzy-neuro controller to control the speed of wound rotor induction motor with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. Control speed by adjusting resistance value in the rotor circuit that occurs the efficiency of power are reduced, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor. Recently, the emergence of artificial neural networks has made it conductive to integrate fuzzy controllers and neural models for the development of fuzzy control systems, Fuzzy-neuro controller has been designed by integrating two neural network models with a basic fuzzy logic controller. Using the back propagation algorithm, the first neural network is trained as a plant emulator and the second neural network is used as a compensator for the basic fuzzy controller to improve its performance on-line. The function of the neural network plant emulator is to provide the correct error signal at the output of the neural fuzzy compensator without the need for any mathematical modeling of the plant. The difficulty of fine-tuning the scale factors and formulating the correct control rules in a basic fuzzy controller may be reduced using the proposed scheme. The scheme is applied to the control speed of a wound rotor induction motor process. The control system is designed to maintain efficiency of motor and compensate power factor of system. That is: the proposed controller gives the controlled system by keeping the speed constant and the good transient response without overshoot can be obtained.

  • PDF

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Robust Adaptive Wavelet-Neural-Network Sliding-Mode Speed Control for a DSP-Based PMSM Drive System

  • El-Sousy, Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.505-517
    • /
    • 2010
  • In this paper, an intelligent sliding-mode speed controller for achieving favorable decoupling control and high precision speed tracking performance of permanent-magnet synchronous motor (PMSM) drives is proposed. The intelligent controller consists of a sliding-mode controller (SMC) in the speed feed-back loop in addition to an on-line trained wavelet-neural-network controller (WNNC) connected in parallel with the SMC to construct a robust wavelet-neural-network controller (RWNNC). The RWNNC combines the merits of a SMC with the robust characteristics and a WNNC, which combines artificial neural networks for their online learning ability and wavelet decomposition for its identification ability. Theoretical analyses of both SMC and WNNC speed controllers are developed. The WNN is utilized to predict the uncertain system dynamics to relax the requirement of uncertainty bound in the design of a SMC. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode speed controller. An experimental system is established to verify the effectiveness of the proposed control system. All of the control algorithms are implemented on a TMS320C31 DSP-based control computer. The simulated and experimental results confirm that the proposed RWNNC grants robust performance and precise response regardless of load disturbances and PMSM parameter uncertainties.

퍼지-신경회로망에 근거한 유도전동기 속도 제어기 설계 (Design of Speed Controller of an Induction Motor Based on Fuzzy-Neural Network)

  • 최성대;반기종;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.282-284
    • /
    • 2006
  • Generally PI controller is used to control the speed of an induction motor. It has the good performance of speed control in case of adjusting the control parameters. But it occurred the problem to change the control parameters in the change of operation condition. In order to solve this problem, Fuzzy control or Artificial neural network is introduced in the speed control of an induction motor. However, Fuzzy control have the problems as the difficulties to change the membership function and fuzzy rule and the remaining error. Also Neural network has the problem as the difficulties to analyze the behavior of inner part. Therefore, the study on the combination of two controller is proceeded. In this paper, Speed controller of an induction motor based fuzzy-neural network is proposed and the speed control of an induction motor is performed using the proposed controller. Through the experiment, the fast response and good stability of the proposed speed controller is proved.

  • PDF

Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Logic Controller for SVC using Tabu Search and Neural Network)

  • 손종훈;황기현;김형수;박준호;박종근
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권4호
    • /
    • pp.188-195
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLS[10] for three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[10].

Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계 (Design of Adaptive Fuzzy Logic Controller using Tabu search and Neural Network)

  • 손종훈;황기현;김형수;문경준;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.34-36
    • /
    • 2000
  • This paper proposes the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gain of input-output variables of fuzzy logic controller and weights of neural network using Tabu search. Neural network used to tune the output gain of FLC adaptively. We have weights of neural network learned using back propagation algorithm. We performed the nonlinear simulation on an single-machine infinite system to prove the efficiency of the proposed method. The proposed AFLC showed the better performance than PD controller in terms of the settling time and damping effect, for power system operation condition.

  • PDF

신경회로망 예측 제어기를 이용한 건축 구조물의 진동제어 (A Vibration Control of Building Structure using Neural Network Predictive Controller)

  • 조현철;이영진;강석봉;이권순
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권4호
    • /
    • pp.434-443
    • /
    • 1999
  • In this paper, neural network predictive PID (NNPPID) control system is proposed to reduce the vibration of building structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the parameters of controller. The neural networks predictor forecasts the future output based on present input and output of building structure. The controller is PID type whose parameters are yielded by neural networks self-tuning algorithm. Computer simulations show displacements of single and multi-story structure applied to NNPPID system about disturbance loads-wind forces and earthquakes.

  • PDF