• Title/Summary/Keyword: neural cadherin

Search Result 5, Processing Time 0.02 seconds

Neural-Cadherin Influences the Homing of Terminally Differentiated Memory CD8 T Cells to the Lymph Nodes and Bone Marrow

  • Kim, Kyong Hoon;Choi, Aryeong;Kim, Sang Hoon;Song, Heonju;Jin, Seohoon;Kim, Kyungim;Jang, Jaebong;Choi, Hanbyeul;Jung, Yong Woo
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.795-804
    • /
    • 2021
  • Memory T (TM) cells play an important role in the long-term defense against pathogen reinvasion. However, it is still unclear how these cells receive the crucial signals necessary for their longevity and homeostatic turnover. To understand how TM cells receive these signals, we infected mice with lymphocytic choriomeningitis virus (LCMV) and examined the expression sites of neural cadherin (N-cadherin) by immunofluorescence microscopy. We found that N-cadherin was expressed in the surroundings of the white pulps of the spleen and medulla of lymph nodes (LNs). Moreover, TM cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1), a ligand of N-cadherin, were co-localized with N-cadherin+ cells in the spleen but not in LNs. We then blocked N-cadherin in vivo to investigate whether it regulates the formation or function of TM cells. The numbers of CD127hiCD62Lhi TM cells in the spleen of memory P14 chimeric mice declined when N-cadherin was blocked during the contraction phase, without functional impairment of these cells. In addition, when CD127loKLRG1hi TM cells were adoptively transferred into anti-N-cadherin-treated mice compared with control mice, the number of these cells was reduced in the bone marrow and LNs, without functional loss. Taken together, our results suggest that N-cadherin participates in the development of CD127hiCD62Lhi TM cells and homing of CD127loKLRG1hi TM cells to lymphoid organs.

The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification (Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향)

  • Song, Jin-Su;Jin, Eun-Jung
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1346-1351
    • /
    • 2009
  • Recent evidence has shown that many pluripotetic neural crest cells are fate-restricted and that different fate-restricted crest cells emigrate from the neural tube at different times. Jin et al. (2001) identified the expression patterns of Wnts and its antagonists at the time that neural crest cells were being specified and suggested that Wnt signaling was involved in the segregation/differentiation of neural crest cells in the trunk in vitro. In this study, we evaluated the effects of Wnt signaling in avian neural crest lineage segregation. To accomplish this, Wnt signaling was disturbed at the time of neural crest segregation and differentiation by grafting Wnt-3a expressing cells and conducting dominant negative glycogen synthase kinase (dnGSK) electroporation. Stimulation of Wnt signaling induced neural crest lineage segregation and melanoblast specification, and increased the expression levels of genes known to be involved in neural crest development such as cadherin 7 and Slug, which suggests that they are involved in Wnt-induced neural crest lineage differentiation into melanoblasts.

Potential Mechanisms of Benzyl Isothiocyanate Suppression of Invasion and Angiogenesis by the U87MG Human Glioma Cell Line

  • Zhu, Yu;Zhang, Ling;Zhang, Guo-Dong;Wang, Hong-Ou;Liu, Ming-Yan;Jiang, Yuan;Qi, Li-Sha;Li, Qi;Yang, Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8225-8228
    • /
    • 2014
  • Glioma is one of the most common tumors in China and chemotherapy is critical for its treatment. Recent studies showed that benzyl isothiocyanate (BITC) could inhibit the growth of glioma cells, but the mechanisms are not fully understood. This study explored the inhibitory effect of BITC on invasion and angiogenesis of U87MG human glioma cells in vitro and in vivo, as well as potential mechanisms. It was found that BITC could inhibit invasion and angiogenesis of human glioma U87MG cells by inducing cell cycle arrest at phase G2/M. It also was demonstrated that BITC decreased expression of cyclin B1, p21, MMP-2/9, VE-cadherin, CD44, CXCR4 and MTH1, the activity of the telomerase and $PKC{\zeta}$ pathway. Microarray analysis was thus useful to explore the potential target genes related to tumorigenic processes. BITC may play important roles in the inhibition of invasion and angiogenesis of human glioma cells.

Epithelial-Mesenchymal Transition-Inducing Factors Involved in the Progression of Lung Cancers

  • Nam, Min-Woo;Kim, Cho-Won;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.213-220
    • /
    • 2022
  • Although there have been advances in cancer therapy and surgical improvement, lung cancer has the lowest survival rate (19%) at all stages. This is because most patients are diagnosed with concurrent metastasis, which occurs due to numerous related reasons. Especially, lung cancer is one of the most common and malignant cancers in the world. Although there are advanced therapeutic strategies, lung cancer remains one of the main causes of cancer death. Recent work has proposed that epithelial-mesenchymal transition (EMT) is the main cause of metastasis in most cases of human cancers including lung cancer. EMT involves the conversion of epithelial cells, wherein the cells lose their epithelial abilities and become mesenchymal cells involved in embryonic development, such as gastrulation and neural crest formation. In addition, recent research has indicated that EMT contributes to altering the cancer cells into cancer stem cells (CSCs). Although EMT is important in the developmental stages, this process also activates lung cancer progression, including complicated and diverse signaling pathways. Despite the numerous investigations on signaling pathways involved in the progression of lung cancer, this malignancy is considered critical for treatment. EMT in lung cancer involves many transcription factors and inducers, for example, Snail, TWIST, and ZEB are the master regulators of EMT. EMT-related factors and signaling pathways are involved in the progression of lung cancer, proposing new approaches to lung cancer therapy. In the current review, we highlight the signaling pathways implicated in lung cancer and elucidate the correlation of these pathways, indicating new insights to treat lung cancer and other malignancies.

Human Embryonic Stem Cell-derived Neuroectodermal Spheres Revealing Neural Precursor Cell Properties (인간 배아줄기세포 유래 신경전구세포의 특성 분석)

  • Han, Hyo-Won;Kim, Jang-Hwan;Kang, Man-Jong;Moon, Seong-Ju;Kang, Yong-Kook;Koo, Deog-Bon;Cho, Yee-Sook
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.87-95
    • /
    • 2008
  • Neural stem/precursor derived from pluripotent human embryonic stem cells (hESCs) has considerable therapeutic potential due to their ability to generate various neural cells which can be used in cell-replacement therapies for neurodegenerative diseases. However, production of neural cells from hESCs remains technically very difficult. Understanding neural-tube like rosette characteristic neural precursor cells from hESCs may provide useful information to increase the efficiency of hESC neural differentiation. Generally, neural rosettes were derived from differentiating hEBs in attached culture system, however this is time-consuming and complicated. Here, we examined if neural rosettes could be formed in suspension culture system by bypassing attachment requirement. First, we tested whether the size of hESC clumps affected the formation of human embryonic bodies (hEBs) and neural differentiation. We confirmed that hEBs derived from $500{\times}500\;{\mu}m$ square sized hESC clumps were effectively differentiated into neural lineage than those of the other sizes. To induce the rosette formation, regular size hEBs were derived by incubation of hESC clumps($500{\times}500\;{\mu}m$) in EB medium for 1 wk in a suspended condition on low attachment culture dish and further incubated for additional $1{\sim}2$ wks in neuroectodermal sphere(NES)-culture medium. We observed the neural tube-like rosette structure from hEBs after $7{\sim}10$ days of differentiation. Their identity as a neural precursor cells was assessed by measuring their expressions of neural precursor markers(Vimentin, Nestin, MSI1, MSI2, Prominin-1, Pax6, Sox1, N-cadherin, Otx2, and Tuj1) by RT-PCR and immunofluorescence staining. We also confirmed that neural rosettes could be terminally differentiated into mature neural cell types by additional incubation for $2{\sim}6$ wks with NES medium without growth factors. Neuronal(Tuj1, MAP2, GABA) and glial($S100{\beta}$ and GFAP) markers were highly expressed after $2{\sim}3$ and 4 wks of incubation, respectively. Expression of oligodendrocyte markers O1 and CNPase was significantly increased after $5{\sim}6$ wks of incubation. Our results demonstrate that rosette forming neural precursor cells could be successfully derived from suspension culture system and that will not only help us understand the neural differentiation process of hESCs but also simplify the derivation process of neural precursors from hESCs.

  • PDF