• Title/Summary/Keyword: network-based analysis

Search Result 6,841, Processing Time 0.046 seconds

Application of Sensor Fault Detection Scheme Based on AANN to Sensor Network (AANN-기반 센서 고장 검출 기법의 센서 네트워크에의 적용)

  • Lee, Young-Sam;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.229-231
    • /
    • 2006
  • NLPCA(Nonlinear Principal Component Analysis) is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(Auto Associative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from sensor network is executed.

  • PDF

Neural Network Based Dissolved Gas Analysis Using Gas Composition Patterns Against Fault Causes

  • J. H. Sun;Kim, K. H.;P. B. Ha
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.130-135
    • /
    • 2003
  • This study describes neural network based dissolved gas analysis using composition patterns of gas concentrations for transformer fault diagnosis. DGA samples were gathered from related literatures and classified into six types of faults and then a neural network was trained using the DGA samples. Diagnosis tests were performed by the trained neural network with DGA samples of serviced transformers, fault causes of which were identified by actual inspection. Diagnosis results by the neural network were in good agreement with actual faults.

Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.175-184
    • /
    • 2020
  • Conventional Monte Carlo simulation-based methods for seismic risk assessment of water networks often require excessive computational time costs due to the hydraulic analysis. In this study, an Artificial Neural Network-based surrogate model was proposed to efficiently evaluate the flow-based system reliability of water distribution networks. The surrogate model was constructed with appropriate training parameters through trial-and-error procedures. Furthermore, a deep neural network with hidden layers and neurons was composed for the high-dimensional network. For network training, the input of the neural network was defined as the damage states of the k-dimensional network facilities, and the output was defined as the network system performance. To generate training data, random sampling was performed between earthquake magnitudes of 5.0 and 7.5, and hydraulic analyses were conducted to evaluate network performance. For a hydraulic simulation, EPANET-based MATLAB code was developed, and a pressure-driven analysis approach was adopted to represent an unsteady-state network. To demonstrate the constructed surrogate model, the actual water distribution network of A-city, South Korea, was adopted, and the network map was reconstructed from the geographic information system data. The surrogate model was able to predict network performance within a 3% relative error at trained epicenters in drastically reduced time. In addition, the accuracy of the surrogate model was estimated to within 3% relative error (5% for network performance lower than 0.2) at different epicenters to verify the robustness of the epicenter location. Therefore, it is concluded that ANN-based surrogate model can be utilized as an alternative model for efficient seismic risk assessment to within 5% of relative error.

Comparison of Recommendation Using Social Network Analysis with Collaborative Filtering in Social Network Sites (SNS에서 사회연결망 기반 추천과 협업필터링 기반 추천의 비교)

  • Park, Sangun
    • Journal of Information Technology Services
    • /
    • v.13 no.2
    • /
    • pp.173-184
    • /
    • 2014
  • As social network services has become one of the most successful web-based business, recommendation in social network sites that assist people to choose various products and services is also widely adopted. Collaborative Filtering is one of the most widely adopted recommendation approaches, but recommendation technique that use explicit or implicit social network information from social networks has become proposed in recent research works. In this paper, we reviewed and compared research works about recommendation using social network analysis and collaborative filtering in social network sites. As the results of the analysis, we suggested the trends and implications for future research of recommendation in SNSs. It is expected that graph-based analysis on the semantic social network and systematic comparative analysis on the performances of social filtering and collaborative filtering are required.

Differences in Network-Based Kernel Density Estimation According to Pedestrian Network and Road Centerline Network

  • Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.335-341
    • /
    • 2018
  • The KDE (Kernel Density Estimation) technique in GIS (Geographic Information System) has been widely used as a method for determining whether a phenomenon occurring in space forms clusters. Most human-generated events such as traffic accidents and retail stores are distributed according to a road network. Even if events on forward and rear roads have short Euclidean distances, network distances may increase and the correlation between them may be low. Therefore, the NKDE (Network-based KDE) technique has been proposed and applied to the urban space where a road network has been developed. KDE is being studied in the field of business GIS, but there is a limit to the microscopic analysis of economic activity along a road. In this study, the NKDE technique is applied to the analysis of urban phenomena such as the density of shops rather than traffic accidents that occur on roads. The results of the NKDE technique are also compared to pedestrian networks and road centerline networks. The results show that applying NKDE to microscopic trade area analysis can yield relatively accurate results. In addition, it was found that pedestrian network data that can consider the movement of actual pedestrians are necessary for accurate trade area analysis using NKDE.

Performance Analysis for MPEG-4 Video Codec Based on On-Chip Network

  • Chang, June-Young;Kim, Won-Jong;Bae, Young-Hwan;Han, Jin-Ho;Cho, Han-Jin;Jung, Hee-Bum
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.497-503
    • /
    • 2005
  • In this paper, we present a performance analysis for an MPEG-4 video codec based on the on-chip network communication architecture. The existing on-chip buses of system-on-a-chip (SoC) have some limitation on data traffic bandwidth since a large number of silicon IPs share the bus. An on-chip network is introduced to solve the problem of on-chip buses, in which the concept of a computer network is applied to the communication architecture of SoC. We compared the performance of the MPEG-4 video codec based on the on-chip network and Advanced Micro-controller Bus Architecture (AMBA) on-chip bus. Experimental results show that the performance of the MPEG-4 video codec based on the on-chip network is improved over 50% compared to the design based on a multi-layer AMBA bus.

  • PDF

Spark-based Network Log Analysis Aystem for Detecting Network Attack Pattern Using Snort (Snort를 이용한 비정형 네트워크 공격패턴 탐지를 수행하는 Spark 기반 네트워크 로그 분석 시스템)

  • Baek, Na-Eun;Shin, Jae-Hwan;Chang, Jin-Su;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.48-59
    • /
    • 2018
  • Recently, network technology has been used in various fields due to development of network technology. However, there has been an increase in the number of attacks targeting public institutions and companies by exploiting the evolving network technology. Meanwhile, the existing network intrusion detection system takes much time to process logs as the amount of network log increases. Therefore, in this paper, we propose a Spark-based network log analysis system that detects unstructured network attack pattern. by using Snort. The proposed system extracts and analyzes the elements required for network attack pattern detection from large amount of network log data. For the analysis, we propose a rule to detect network attack patterns for Port Scanning, Host Scanning, DDoS, and worm activity, and can detect real attack pattern well by applying it to real log data. Finally, we show from our performance evaluation that the proposed Spark-based log analysis system is more than two times better on log data processing performance than the Hadoop-based system.

A Study on Development of the Spatial Network Analysis Tool based on Open BIM Technologies (개방형 BIM 기반 공간네트워크 분석도구 개발에 관한 연구)

  • Park, Young-Sup
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.1
    • /
    • pp.7-16
    • /
    • 2012
  • One distinguishing feature of BIM(Building Information Modeling) is the objectification of spatial elements independently, which makes it easy to represent spatial network. From this perspective, this study aimed to develop the spatial network analysis tool based on open BIM technologies. From the literature review, an object model of spatial network with nodes and links and a process model from construction to visualization were established. A prototype system implementing the proposed models, named SNAT(Spatial Network Analysis Tool), was developed in Java platform with using its open source packages. SNAT can create a spatial network from IFC-BIM model, calculate the indices of spatial network analysis, and visualize it with the representing types(map, graph, matrix and table).

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

Community-based Knowledge Networks: an Australian case study (커뮤니티 기반 지식 네트워크: 호주 사례 연구)

  • Bendle, Lawrence J.
    • Knowledge Management Research
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2011
  • This paper reports on a structural view of a knowledge network comprised of clubs and organisationsexpressly concerned with cultural activities in a regional Australian city. Social network analysis showed an uneven distribution of power, influence, and prominence in the network. The network structure consisted of two modules of vertices clustered around particular categories of creative arts and these modules were linked most frequently by several organisations acting as communication hubs and boundary spanners. The implications of the findings include 'network weaving' for improving the network structure and developing a systemic approach for exploring the structures of social action that form community-based knowledge networks.

  • PDF