1 |
Gupta, R. and Bhave, P.R. (1996), "Comparison of methods for predicting deficient-network performance", J. Water Resour. Plan Manag., 122, 214-217. https://doi.org/10.1061/(ASCE)0733-9496(1996)122:3(214)
DOI
|
2 |
Hakim, S.,and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Syst., Int. J., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159
DOI
|
3 |
Hwang, H.H., Lin, H. and Shinozuka, M. (1998), "Seismic performance assessment of water delivery systems", J. Infrastruct. Syst., 4, 118-125. https://doi.org/10.1061/(ASCE)1076-0342(1998)4:3(118)
DOI
|
4 |
Isoyama, R., Ishida, E., Yune, K. and Shirozu, T. (2000), "Seismic damage estimation procedure for water supply pipelines", Proceedings of the 12th World Conference on Earthquake Engineering (WCEE), Auckland, New Zealand, p. 1762.
|
5 |
Jeon, S.-S. and O'Rourke, T.D. (2005), "Northridge earthquake effects on pipelines and residential buildings", Bull. Seismol. Soc. Am., 95, 294-318.
DOI
|
6 |
Joyner, W.B. and Boore, D.M. (1993), "Methods for regression analysis of strong-motion data", Bull. Seismol. Soc. Am., 83, 469-487.
|
7 |
Kang, W.-H., Song, J. and Gardoni, P. (2008), "Matrix-based system reliability method and applications to bridge networks", Reliab. Eng. Syst. Saf., 93, 1584-1593. https://doi.org/10.1016/j.ress.2008.02.011
DOI
|
8 |
Kang, W.-H., Lee, Y.-J. and Zhang, C. (2017), "Computer-aided analysis of flow in water pipe networks after a seismic event", Mathe. Probl. Eng. https://doi.org/10.1155/2017/2017046
|
9 |
Kim, J.-T., Park, J.-H., Koo, K.-Y. and Lee, J.-J. (2008), "Acceleration-based neural networks algorithm for damage detection in structures", Smart Struct. Syst., Int. J., 4(5), 583-603. https://doi.org/10.12989/sss.2008.4.5.583
DOI
|
10 |
Kim, J., Deshmukh, A. and Hastak, M. (2018), "A framework for assessing the resilience of a disaster debris management system", Int. J. Disaster Risk Reduct., 28, 674-687. https://doi.org/10.1016/j.ijdrr.2018.01.028
DOI
|
11 |
Lee, D.H., Kim, B.H., Lee, H. and Kong, J.S. (2009), "Seismic behavior of a buried gas pipeline under earthquake excitations", Eng. Struct., 31, 1011-1023. https://doi.org/10.1016/j.engstruct.2008.12.012
DOI
|
12 |
Lee, Y.-J., Song, J., Gardoni, P. and Lim, H.-W. (2011), "Posthazard flow capacity of bridge transportation network considering structural deterioration of bridges", Struct. Infrastruct. Eng., 7, 509-521. https://doi.org/10.1080/15732479.2010.493338
DOI
|
13 |
Li, P.H.., Zhu, H.P., Luo, H. and Weng, S. (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., Int. J., 15(1), 227-244. https://doi.org/10.12989/sss.2015.15.1.227
DOI
|
14 |
Lim, H.W. and Song, J. (2012), "Efficient risk assessment of lifeline networks under spatially correlated ground motions using selective recursive decomposition algorithm", Earthq. Eng. Struct. Dyn., 41, 1861-1882. https://doi.org/10.1002/eqe.2162
DOI
|
15 |
Mangalathu, S., Heo, G. and Jeon, J.-S. (2018), "Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes", Eng. Struct., 162, 166-176. https://doi.org/10.1016/j.engstruct.2018.01.053
DOI
|
16 |
PAHO (2002), Emergencies and Disasters in Drinking Water Supply and Sewage Systems: Guidelines for Effective Response; Pan American Health Organization (PAHO).
|
17 |
Nguyen, D.H., Bui, T.T., De Roeck, G. and Wahab, M.A. (2019), "Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks", Struct. Eng. Mech., Int. J., 71(2), 175-183. https://doi.org/10.12989/sem.2019.71.2.175
|
18 |
O'Rourke, M. and Ayala, G. (1993), "Pipeline damage due to wave propagation", J. Geotech. Eng., 119, 1490-1498. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:9(1490)
DOI
|
19 |
Okumura, T. and Shinozuka, M. (1991), "Serviceability analysis of Memphis water delivery system", Proceedings of the 3rd US Conference on Lifeline Earthquake Engineering, Los Angeles, CA, USA.
|
20 |
Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521
|
21 |
Park, S., Choi, C.L., Kim, J.H. and Bae, C.H. (2010), "Evaluating the economic residual life of water pipes using the proportional hazards model", Water Resour. Manag., 24, 3195-3217. https://doi.org/10.1007/s11269-010-9602-3
DOI
|
22 |
Puchovsky, M.T. (1999), Automatic sprinkler systems handbook, National Fire Protection Association (NFPA).
|
23 |
Rizzo, P. and Lanza, D.S. (2006), "Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring", Smart Struct. Syst., Int. J., 2(3), 253-274. https://doi.org/10.12989/sss.2006.2.3.253
DOI
|
24 |
Sokolov, V., Wenzel, F., Jean, W.-Y. and Wen, K.-L. (2010), "Uncertainty and spatial correlation of earthquake ground motion in Taiwan", Terr. Atmos. Ocean. Sci., 21(6), 905-921. https://doi.org/10.3319/TAO.2010.05.03.01(T)
DOI
|
25 |
Rokneddin, K., Ghosh, J., Duenas-Osorio, L. and Padgett, J.E. (2013), "Bridge retrofit prioritisation for ageing transportation networks subject to seismic hazards", Struct. Infrastruct. Eng., 9, 1050-1066. https://doi.org/10.1080/15732479.2011.654230
DOI
|
26 |
Seo, J. and Linzell, D.G. (2013), "Use of response surface metamodels to generate system level fragilities for existing curved steel bridges", Eng. Struct., 52, 642-653. https://doi.org/10.1016/j.engstruct.2013.03.023
DOI
|
27 |
Seo, J., Duenas-Osorio, L., Craig, J.I. and Goodno, B.J. (2012), "Metamodel-based regional vulnerability estimate of irregular steel moment-frame structures subjected to earthquake events", Eng. Struct., 45, 585-597. https://doi.org/10.1016/j.engstruct.2012.07.003
DOI
|
28 |
Shahbazi, Y., Delavari, E. and Chenaghlou, M.R. (2014), "Predicting the buckling load of smart multilayer columns using soft computing tools", Smart Struct. Syst., Int. J., 13(1), 81-98. https://doi.org/10.12989/sss.2013.13.1.081
DOI
|
29 |
Shi, P. and O'Rourke, T.D. (2006), "Seismic response modeling of water supply systems", MCEER Technical Report-MCEER-08-0016.
|
30 |
Stern, R.E., Song, J. and Work, D.B. (2017), "Accelerated Monte Carlo system reliability analysis through machine-learningbased surrogate models of network connectivity", Reliab. Eng. Syst. Saf., 164, 1-9. https://doi.org/10.1016/j.ress.2017.01.021
DOI
|
31 |
Wagner, J.M., Shamir, U. and Marks, D.H. (1988), "Water Distribution Reliability: Simulation Methods", J. Water Resour. Plan Manag., 114, 276-294. https://doi.org/10.1061/(ASCE)0733-9496(1988)114:3(276)
DOI
|
32 |
Ambraseys, N.N., Douglas, J., Sarma, S.K. and Smit, P.M. (2005b), "Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East: Vertical Peak Ground Acceleration and Spectral Acceleration", Bull. Earthq. Eng., 3, 55-73. https://doi.org/10.1007/s10518-005-0186-x
DOI
|
33 |
Abrahamson, N.A. and Youngs, R. (1992), "A stable algorithm for regression analyses using the random effects model", Bull. Seismol. Soc. Am., 82, 505-510.
|
34 |
Akin, O. and Sahin, M. (2017), "Active neuro-adaptive vibration suppression of a smart beam", Smart Struct. Syst., Int. J., 20(6), 657-668. https://doi.org/10.12989/sss.2017.20.6.657
|
35 |
Ambraseys, N., Douglas, J., Sarma, S. and Smit, P. (2005a), "Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration", Bull. Earthq. Eng., 3, 1-53. https://doi.org/10.1007/s10518-005-0183-0
DOI
|
36 |
Bonneau, A.L. and O'Rourke, T.D. (2009), "Water supply performance during earthquakes and extreme events", MCEER Technical Report-MCEER-09-0003.
|
37 |
Boore, D.M., Gibbs, J.F., Joyner, W.B., Tinsley, J.C. and Ponti, D.J. (2003), "Estimated ground motion from the 1994 Northridge, California, earthquake at the site of the Interstate 10 and La Cienega Boulevard bridge collapse, West Los Angeles, California", Bull. Seismol. Soc. Am., 93, 2737-2751. https://doi.org/10.1785/0120020197
DOI
|
38 |
Wang, M. and Takada, T. (2005), "Macrospatial correlation model of seismic ground motions", Earthq. Spectra, 21, 1137-1156. https://doi.org/10.1193/1.2083887
DOI
|
39 |
Wagener, T., Goda, K., Erdik, M., Daniell, J. and Wenzel, F. (2016), "A spatial correlation model of peak ground acceleration and response spectra based on data of the Istanbul Earthquake Rapid Response and Early Warning System", Soil Dyn. Earthq. Eng., 85, 166-178. https://doi.org/10.1016/j.soildyn.2016.03.016
DOI
|
40 |
Wang, Y. and O'Rourke, T.D. (2006), "Seismic performance evaluation of water supply systems", MCEER Technical Report-MCEER-08-0015.
|
41 |
Wang, Y., Au, S.-K. and Fu, Q. (2010), "Seismic risk assessment and mitigation of water supply systems", Earthq. Spectra, 26, 257-274. https://doi.org/10.1193/1.3276900
DOI
|
42 |
Farahmandfar, Z. and Piratla, K.R. (2017), "Comparative evaluation of topological and flow-based seismic resilience metrics for rehabilitation of water pipeline systems", J. Pipeline Syst. Eng. Pract., 9, 04017027. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000293
DOI
|
43 |
Cerchiello, V., Ceresa, P., Monteiro, R. and Komendantova, N. (2018), "Assessment of social vulnerability to seismic hazard in Nablus, Palestine", Int. J. Disaster Risk Reduct, 28, 491-506. https://doi.org/10.1016/j.ijdrr.2017.12.012
DOI
|
44 |
Yoon, S., Lee, Y.-J. and Jung, H.-J. (2018), "A comprehensive framework for seismic risk assessment of urban water transmission networks", Int. J. Disaster Risk Reduct., 31, 983-994. https://doi.org/10.1016/j.ijdrr.2018.09.002
DOI
|
45 |
Yoon, S., Lee, Y.-J. and Jung, H.-J. (2020), "A comprehensive approach to flow-based seismic risk analysis of water transmission network", Struct. Eng. Mech., Int. J., 73(3), 339-351. https://doi.org/10.12989/sem.2020.73.3.339
|
46 |
Dueñas‐Osorio, L. and Rojo, J. (2011), "Reliability assessment of lifeline systems with radial topology", Comput. Aided Civil Infrastruct. Eng., 26, 111-128. https://doi.org/10.1111/j.1467-8667.2010.00661.x
DOI
|
47 |
Duenas‐Osorio, L., Craig, J.I. and Goodno, B.J. (2007), "Seismic response of critical interdependent networks", Earthq. Eng. Struct. Dyn., 36, 285-306. https://doi.org/10.1002/eqe.626
DOI
|
48 |
Esposito, S. and Iervolino, I. (2012), "Spatial correlation of spectral acceleration in European data", Bull. Seismol. Soc. Am., 102, 2781-2788. https://doi.org/10.1785/0120120068
DOI
|
49 |
Esposito, S., Iervolino, I., d'Onofrio, A., Santo, A., Cavalieri, F. and Franchin, P. (2015), "Simulation-based seismic risk assessment of gas distribution networks", Comput. Aided Civil Infrastruct. Eng., 30, 508-523. https://doi.org/10.1111/mice.12105
DOI
|
50 |
FEMA (2003), Multi-Hazard Loss Estimation Methodology Earthquake Model, HAZUS-MH MR3 Technical Manual; United States Department of Homeland Security, Federal Emergency Management Agency, Washington, DC, USA.
|
51 |
Goda, K. and Hong, H.-P. (2008), "Spatial correlation of peak ground motions and response spectra", Bull. Seismol. Soc. Am., 98, 354-365. https://doi.org/10.1785/0120070078
DOI
|
52 |
Guidotti, R., Chmielewski, H., Unnikrishnan, V., Gardoni, P., McAllister, T. and van de Lindt, J. (2016), "Modeling the resilience of critical infrastructure: The role of network dependencies", Sustain. Resilient Infrastruct., 1, 153-168. https://doi.org/10.1080/23789689.2016.1254999
DOI
|