• Title/Summary/Keyword: network structure

Search Result 5,386, Processing Time 0.029 seconds

A Study on the Network Generation Methods for Examining the Intellectual Structure of Knowledge Domains (지적 구조의 규명을 위한 네트워크 형성 방식에 관한 연구)

  • Lee Jae-Yun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.2
    • /
    • pp.333-355
    • /
    • 2006
  • Network generation methods to visualize bibliometric data for examining the intellectual structure of knowledge domains are investigated in some detail. Among the four methods investigated in this study, pathfinder network algorithm is the most effective method in representing local details as well as global intellectual structure. The nearest neighbor graph, although never used in bibliometic analysis, also has some advantages such as its simplicity and clustering ability. The effect of input data preparation process on resulting intellectual structures are examined, and concluded that unlike MDS map with clusters, the network structure could be changed significantly by the differences in data matrix preparation process. The network generation methods investigated in this paper could be alternatives to conventional multivariate analysis methods and could facilitate our research on examining intellectual structure of knowledge domains.

A new lightweight network based on MobileNetV3

  • Zhao, Liquan;Wang, Leilei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • The MobileNetV3 is specially designed for mobile devices with limited memory and computing power. To reduce the network parameters and improve the network inference speed, a new lightweight network is proposed based on MobileNetV3. Firstly, to reduce the computation of residual blocks, a partial residual structure is designed by dividing the input feature maps into two parts. The designed partial residual structure is used to replace the residual block in MobileNetV3. Secondly, a dual-path feature extraction structure is designed to further reduce the computation of MobileNetV3. Different convolution kernel sizes are used in the two paths to extract feature maps with different sizes. Besides, a transition layer is also designed for fusing features to reduce the influence of the new structure on accuracy. The CIFAR-100 dataset and Image Net dataset are used to test the performance of the proposed partial residual structure. The ResNet based on the proposed partial residual structure has smaller parameters and FLOPs than the original ResNet. The performance of improved MobileNetV3 is tested on CIFAR-10, CIFAR-100 and ImageNet image classification task dataset. Comparing MobileNetV3, GhostNet and MobileNetV2, the improved MobileNetV3 has smaller parameters and FLOPs. Besides, the improved MobileNetV3 is also tested on CPU and Raspberry Pi. It is faster than other networks

aCN-RB-tree: Constrained Network-Based Index for Spatio-Temporal Aggregation of Moving Object Trajectory

  • Lee, Dong-Wook;Baek, Sung-Ha;Bae, Hae-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.527-547
    • /
    • 2009
  • Moving object management is widely used in traffic, logistic and data mining applications in ubiquitous environments. It is required to analyze spatio-temporal data and trajectories for moving object management. In this paper, we proposed a novel index structure for spatio-temporal aggregation of trajectory in a constrained network, named aCN-RB-tree. It manages aggregation values of trajectories using a constraint network-based index and it also supports direction of trajectory. An aCN-RB-tree consists of an aR-tree in its center and an extended B-tree. In this structure, an aR-tree is similar to a Min/Max R-tree, which stores the child nodes' max aggregation value in the parent node. Also, the proposed index structure is based on a constrained network structure such as a FNR-tree, so that it can decrease the dead space of index nodes. Each leaf node of an aR-tree has an extended B-tree which can store timestamp-based aggregation values. As it considers the direction of trajectory, the extended B-tree has a structure with direction. So this kind of aCN-RB-tree index can support efficient search for trajectory and traffic zone. The aCN-RB-tree can find a moving object trajectory in a given time interval efficiently. It can support traffic management systems and mining systems in ubiquitous environments.

Network Structure and Dextran Formation of Jeungpyeon Made with Yeast Starter

  • Hahn, Young-Sook;Lee, Hae-Eun;Park, Ju-Yeon;Woo, Kyung-Ja
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • The dextransucrase activity of microorganisms which were identified as contributing to the fermentation of jeungpyeon made with yeast was measured. The dextran generated during fermentation was quantified and the viscosity changes were measured. The mechanism of network structure formation was clarified by observing the inside of the network structure over the fermentation periods ranging from 1 to 7 hr using scanning electron microscopy (SEM). The pH of jeungpyeon batter decreased significantly as the fermentation proceeded, whereas the viscosity increased. The identified lactic acid bacteria (LAB) were Leuconostoc mesenteroides subsp. mesenteroides, Pediococcus pentosaceus, Tetragenococcus halophilus, and Leuconostoc mesenteroides subsp. dextranicum. The yeast was identified as Saccharomyces cerevisiae A/Tor. Pretorien. The dextransucrase extracted from those microorganisms showed high activity. On the other hand, the amount of dextran generated from the batter increased significantly beyond 2 hr of fermentation, and the viscosity increment showed a similar trend. The SEM photos showed that the most homogeneous fine network structure was observed in the batter fermented for 2 hr. Therefore, we assumed that the dextran that was generated by microorganisms during fermentation interacted with the components of the batter to increase the stability of the network structure.

Structure optimization of neural network using co-evolution (공진화를 이용한 신경회로망의 구조 최적화)

  • 전효병;김대준;심귀보
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.67-75
    • /
    • 1998
  • In general, Evoluationary Algorithm(EAs) are refered to as methods of population-based optimization. And EAs are considered as very efficient methods of optimal sytem design because they can provice much opportunity for obtaining the global optimal solution. This paper presents a co-evolution scheme of artifical neural networks, which has two different, still cooperatively working, populations, called as a host popuation and a parasite population, respectively. Using the conventional generatic algorithm the host population is evolved in the given environment, and the parastie population composed of schemata is evolved to find useful schema for the host population. the structure of artificial neural network is a diagonal recurrent neural netork which has self-feedback loops only in its hidden nodes. To find optimal neural networks we should take into account the structure of the neural network as well as the adaptive parameters, weight of neurons. So we use the genetic algorithm that searches the structure of the neural network by the co-evolution mechanism, and for the weights learning we adopted the evolutionary stategies. As a results of co-evolution we will find the optimal structure of the neural network in a short time with a small population. The validity and effectiveness of the proposed method are inspected by applying it to the stabilization and position control of the invered-pendulum system. And we will show that the result of co-evolution is better than that of the conventioal genetic algorithm.

  • PDF

A Study on Efficient Network Topology Visualization using Node Centrality (노드 중심성을 이용한 효율적 네트워크 토폴로지 시각화 연구)

  • Chang, Beom-Hwan;Ryu, Jemin;Kwon, Koohyung
    • Convergence Security Journal
    • /
    • v.21 no.2
    • /
    • pp.47-56
    • /
    • 2021
  • Network topology visualization has been studied a lot since the past and developed with many tools. The network topology has strength in understanding the overall structure of a network physically and is useful for understanding data flow between nodes logically. Although there are existing tools, not many can be utilized efficiently while using the general network node data structure and express the topology similar to the actual network structure. In this paper, we propose an efficient method to visualize topology using only connection information of network nodes. The method finds the central node by using the centrality, the influence of nodes in the network, and visualizes the topology by dynamically segmenting all nodes and placing network nodes in 3D space using the weight of the child node. It is a straightforward method, yet it effectively visualizes in the form of an actual network structure.

Optimization of the Radial Basis Function Network Using Time-Frequency Localization (시간-주파수 분석을 이용한 방사 기준 함수 구조의 최적화)

  • 김성주;김용택;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.459-462
    • /
    • 2000
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network which is more simple in the part of the structure and converges more faster than Neural Network with the analysis method using Time-Frequency Localization. When we construct the hidden node with the Radial Basis Function whose localization is similar with an approximation target function in the plane of the Time and Frequency, we make a good decision of the initial structure having an ability of approximation.

  • PDF

A Robust Control with The Bound Function of Neural Network Structure for Robot Manipulator

  • Chul, Ha-In;Chul, Han-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.113.1-113
    • /
    • 2001
  • The robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The neural network structure presents the bound function and does not need the concave property of the bound function, The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulators.

  • PDF

Structure Optimization of Neural Networks using Rough Set Theory (러프셋 이론을 이용한 신경망의 구조 최적화)

  • 정영준;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.49-52
    • /
    • 1998
  • Neural Network has good performance in pattern classification, control and many other fields by learning ability. However, there is effective rule or systematic approach to determine optimal structure. In this paper, we propose a new method to find optimal structure of feed-forward multi-layer neural network as a kind of pruning method. That eliminating redundant elements of neural network. To find redundant elements we analysis error and weight changing with Rough Set Theory, in condition of executing back-propagation leaning algorithm.

  • PDF

A Fuzzy Neural Network: Structure and Learning

  • Figueiredo, M.;Gomide, F.;Pedrycz, W.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1171-1174
    • /
    • 1993
  • A promising approach to get the benefits of neural networks and fuzzy logic is to combine them into an integrated system to merge the computational power of neural networks and the representation and reasoning properties of fuzzy logic. In this context, this paper presents a fuzzy neural network which is able to code fuzzy knowledge in the form of it-then rules in its structure. The network also provides an efficient structure not only to code knowledge, but also to support fuzzy reasoning and information processing. A learning scheme is also derived for a class of membership functions.

  • PDF