• Title/Summary/Keyword: network shortest distance

Search Result 85, Processing Time 0.019 seconds

An algorithm for the preprocessing shortest path problem (최단경로문제의 사전처리 해법에 관한 연구)

  • 명영수
    • Korean Management Science Review
    • /
    • v.19 no.1
    • /
    • pp.55-66
    • /
    • 2002
  • Given a directed network, a designated arc, and lowers and upper bounds for the distance of each arc, the preprocessing shortest path problem Is a decision problem that decides whether there is some choice of distance vector such that the distance of each arc honors the given lower and upper bound restriction, and such that the designated arc is on some shortest path from a source node to a destination notre with respect to the chosen distance vector. The preprocessing shortest path problem has many real world applications such as communication and transportation network management and the problem is known to be NP-complete. In this paper, we develop an algorithm that solves the problem using the structural properties of shortest paths.

A Sequencing Algorithm for Order Processing by using the Shortest Distance Model in an Automated Storage/Retrieval Systems (자동창고시스템에 있어서 최단거리모형을 이용한 주문처리결정방법)

  • 박하수;김민규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.29-37
    • /
    • 1995
  • An Automated Storage/Retrieval Systems(AS/RS) has been gradually emphasized because of the change of production and distribution environment. This paper develops algorithm and Shortest Distance Model that can reduce the traveling time of a stacker crane for efficient operation of AS/RS. In order to reduce the traveling time of a stacker crane, we determine the order processing and then the sequencing of storage/retrieval for each item. Order processing is determined based on the SPT(Shortest Processing Time) concept considering a criterion of retrieval coordinate. The sequencing of storage/retrieval is determined based on the Shortest Distance Model by using a modified SPP(Shortest Path Problem) of network problem. A numerical example is provided to illustrate the developed algorithm and Shortest Distance Model.

  • PDF

Development of the Multi-Path Finding Model Using Kalman Filter and Space Syntax based on GIS (Kalman Filter와 Space Syntax를 이용한 GIS 기반 다중경로제공 시스템 개발)

  • Ryu, Seung-Kyu;Lee, Seung-Jae;Ahn, Woo-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.149-158
    • /
    • 2005
  • The object of this paper is to develop the shortest path algorithm. The existing shortest path algorithm models are developed while considering travel time and travel distance. A few problems occur in these shortest path algorithm models, which have paid no regard to cognition of users, such as when user who doesn't have complete information about the trip meets a strange road or when the route searched from the shortest path algorithm model is not commonly used by users in real network. This paper develops a shortest path algorithm model to provide ideal route that many people actually prefer. In order to provide the ideal shortest path with the consideration of travel time, travel distance and road cognition, travel time is predicted by using Kalman filtering and travel distance is predicted by using GIS attributions. The road cognition is considered by using space data of GIS. Optimal routes provided from this paper are shortest distance path, shortest time path, shortest path considering distance and cognition and shortest path considering time and cognition.

A Study on the Shortest Path Problem in General Networks (General networks 에 있어서 최단 경로 문제에 대한 연구)

  • 김준홍
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.36
    • /
    • pp.153-158
    • /
    • 1995
  • Finding shortest paths in networks is the fundamental problem in network theory and has numerous in Operations Research and related fields. The purpose of this study is to present a algorithm for solving the length of the shortest paths from a fixed node in a general network in which the arc distance can be arbitrary value. This algorithm has a worst computational bound of $n^3/4$ additions and $n^3/4$ comparisons, which is lower the worst computational bounds of other available algorithms.

  • PDF

Finding the shortest distance between all pairs of nodes in circular sparse networks by decomposition algorithm (Circular sparse network에서 분할법을 이용한 최단거리 결정)

  • Jun-Hong Kim;Young-Bae Chung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • 이 논문은 환(環)을 형성하는 부분네트웍들로 이루어진 sparse network의 특수한 형태에서 최단거리 결정을 위한 효율적인 앨고리즘을 제안한다. 제시된 앨고리즘은 소위 비환(非換) 형태의 sparse network에 대한 최단거리 결정 앨고리즘의 확장이라 할 수 있다. 도우넛 형태를 갖는 sparse network에 대해 최단거리 결정을 위한 접근법으로 하나는 정점제거 방법이고, 다른 하나는 선분제거 방법이다. 여기서 제안된 앨고리즘은 일반적인 n-degree circular sparse network으로 확대될 수 있다.

k-NN Query Processing Algorithm based on the Matrix of Shortest Distances between Border-point of Voronoi Diagram (보로노이 다이어그램의 경계지점 최소거리 행렬 기반 k-최근접점 탐색 알고리즘)

  • Um, Jung-Ho;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.105-114
    • /
    • 2009
  • Recently, location-based services which provides k nearest POIs, e.g., gas stations, restaurants and banks, are essential such applications as telematics, ITS(Intelligent Transport Systems) and kiosk. For this, the Voronoi Diagram k-NN(Nearest Neighbor) search algorithm has been proposed. It retrieves k-NNs by using a file storing pre-computed network distances of POIs in Voronoi diagram. However, this algorithm causes the cost problem when expanding a Voronoi diagram. Therefore, in this paper, we propose an algorithm which generates a matrix of the shortest distance between border points of a Voronoi diagram. The shortest distance is measured each border point to all of the rest border points of a Voronoi Diagram. To retrieve desired k nearest POIs, we also propose a k-NN search algorithm using the matrix of the shortest distance. The proposed algorithms can m inim ize the cost of expanding the Voronoi diagram by accessing the pre-computed matrix of the shortest distances between border points. In addition, we show that the proposed algorithm has better performance in terms of retrieval time, compared with existing works.

  • PDF

Design and Implementation of Real-time Shortest Path Search System in Directed and Dynamic Roads (방향성이 있는 동적인 도로에서 실시간 최단 경로 탐색 시스템의 설계와 구현)

  • Kwon, Oh-Seong;Cho, Hyung-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.649-659
    • /
    • 2017
  • Typically, a smart car is equipped with access to the Internet and a wireless local area network. Moreover, a smart car is equipped with a global positioning system (GPS) based navigation system that presents a map to a user for recommending the shortest path to a desired destination. This paper presents the design and implementation of a real-time shortest path search system for directed and dynamic roads. Herein, we attempt to simulate real-world road environments, while considering changes in the ratio of directed roads and in road conditions, such as traffic accidents and congestions. Further, we analyze the effect of the ratio of directed roads and road conditions on the communication cost between the server and vehicles and the arrival times of vehicles. In this study, we compare and analyze distance-based shortest path algorithms and driving time-based shortest path algorithms while varying the number of vehicles to search for the shortest path, road conditions, and ratio of directed roads.

Development of Shortest Path Searching Network Reduction Algorithm (최단경로 탐색영역 축소 알고리즘 개발)

  • Ryu, Yeong-Geun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.12-21
    • /
    • 2013
  • This study developed searching network reduction algorithm for reduce shortest path searching time. Developed algorithm is searching nodes that have the including possibility of less weights path than temporal path that consists minimum number of nodes and minimum sum of the straight line distances. The node that has the including possibility of shortest path is the node that the sum of straight line distance from start node and straight line distance to target node is less than the value that temporary path's weights divided by minimum weights units. If searching network reconstitutes only these nodes, the time of shortest path searching will be reduced. This developed algorithm has much effectiveness that start node and target node is close in large network.

Performance Evaluation of a Survivable Ship Backbone Network Exploiting k-Shortest Disjoint Paths (k-최단 분리 경로 배정을 적용한 장애 복구형 선박 백본 네트워크의 성능 평가)

  • Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.701-712
    • /
    • 2012
  • The concept of $k$-shortest disjoint paths is considered important because the establishment of primary and backup forwarding paths exploiting shorter distance and faster propagation time is a dominant consideration for the design of a survivable backbone network. Therefore, we need to evaluate how well the concept of $k$-shortest disjoint paths is exploited for the design of a survivable ship backbone network considering the international standard related to ship backbone networks, the IEC61162-410 standard specifying how to manage redundant message transmissions among ship devices. Performance evaluations are conducted in terms of following objective goals: link capacity, hop and distance of primary and backup paths, even distribution of traffic flows, restoration time of backup forwarding paths, and physical network topology connectivity.

A Fast Algorithm for Shortest Path Problem for Network with Turn Penalities and Prohibitions (교차로 제약과 지연이 있는 네트워크에서 최단경로탐색)

  • 박찬규;박순달;진희채
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.17-26
    • /
    • 1998
  • Shortest path problem in road network with turn penalties and prohibitions frequently arises from various transportation optimization models. In this paper, we propose a new algorithm for the shortest Path problem with turn prohibitions and delays. The proposed algorithm maintains distance labels of arcs, which is similar to labels of nodes of Dijkstra's algorithm. Fibonacci heap implementation of the proposed algorithm solves the problem in O(mn + mlogm). We provide a new insight in transforming network with turn penalties and prohibitions into another network in which turn penalties and prohibitions are implicitly considered. The proposed algorithm is implemented using new data structure and compared with Ziliaskopoulos' algorithm. Computational results show that the proposed algorithm is very efficient.

  • PDF