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1. Introduction

One of the fundamental problems in network theory is to
find shortest distances or paths in a network. The problem of
finding a shortest distance often occurs as a sub-problem of
other optimization problems. In most applications, a network
is very sparse. A sparse network can be regarded as several
small networks overlapping each other.

A sparse network is consists of two types shape. The one is
composed of a non-circular series of sub-networks like as a line-
arly-overlaping network, a star-shaped network[Fig.1], or a tree
network. The others is composed of a series of sub-networks
which form a circle or cycles of sub-networks. For examples, a
sparse network can be a doughnut shaped network(Fig.2], a pen-
dulum shaped network, a wheel shaped network, a dumbbell
shaped network, a web shaped network and others.

The characteristics of a circular sparse network are as fol-
lows :

(1) It can be composed into sub-networks Nj, Na,--+, Nq.

(2) There are arcs connecting all or most pairs of nodes
within the sub-networks.

(3) There are arcs connecting the nodes in certain sets of
neighboring sub-networks but not others.

(4) The series of sub-networks form a cycle or cycles of
sub-networks.

The shortest distances between all pairs of nodes in a circu-
lar sparse network can be obtained by an all pair shortest path
algorithm. However, when a network is a circular sparse net-
work, all shortest distances can be obtained more efficiently
by decomposition algorithms. The decomposition algorithms
for finding all shortest distances in a circular sparse network
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are somewhat different from, and are more complicated than,
the decomposition algorithms for finding all shortest distances
in a non-circular sparse network.

When a sparse network is a non-circular network, all short-
est distances in the network can be obtained more efficiently
by decomposition algorithm than by all pair shortest path
algorithm.  Authors who have introduced different decom-
position algorithm for finding all shortest distances in non-cir-
cular sparse networks are Blewett and Hu[4], Shier[13],
Saltzer et al[12], Rescipno AA[11], Chen CC et al[5], H&+%-
[16] etc. and circular sparse networks are Zheng SQ et al[15],
Chen DZ et al{6], Atallah MJ et alf12].

In this study we will present decomposition algorithms for
finding all shortest distances in different types of circular
sparse networks where the arc distance can be zero, positive

or negative in a doughnut shaped network.

2. Decomposition algorithms for find-
ing all shortest distances in dough-
nut shaped sparse networks

Consider a sparse network consisting of a series of sub-net-
works, Nj, Nj,-+-, Ng, such that N; is directly connected only
to Ng and N3, N, is directly connected only to N, and Nj,---,
N; is directly connected only to Ny, and N,--, etc. The net-
work of this nature can be shown in Fig.2 by a graph and its
arc distances by a matrix. We will call a network of this na-
ture a doughnut shaped sparse network
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Graph of star-shaped network
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Distance matrix of star-shaped sparse network

<Fig.1> Star-shaped sparse network

Graph of doughnut shaped network

Distance matrix of sparse doughnut shaped network.

<Fig. 2> Doughnut shaped sparse network

All shortest distance in a doughnut shaped sparse network
can be obtained by several approaches :
(1) Find all shortest distances by an all pair shortest path
algorithms.
(2) Find all shortest distances as follows :

(a) remove from the network an arbitrary sub-network
such that the resulting network is a first type of line-
arly-overlapping sparse network.

(b) find all shortest distances in the new network.

(c) restore the sub-network which was removed in the
step(2)(a) and update all shortest distances in the
new network. We will call this approach the node
elimination approach.

(3) Find all shortest distances as follows :

(a) remove from the network the set of arcs that connect
two arbitrary neighboring sub-networks such that the
resulting network is a first type of linearly-over-
lapping sparse network.

(b) find all shortest distances in the new network.

(c) restore the sub-network which was removed in the
step(3)(a) and update all shortest distances in the
new network. We will call this approach the arc
elimination approach.

The first approach is most straight forward but is least
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efficient. The second and the third approaches are somewhat
different yet have a similar efficiency.

In next section, we will develop different algorithms for
finding all shortest distances in a doughnut shaped sparse net-
work based on the second and the third approaches.

2.1 A node elimination Approach (Algorithm 1)

Based on a node elimination approach above, we can devel-
op an algorithm for finding all shortest distances in a dough-
nut shape sparse network as follows :

Step 1. Apply algorithms for finding shortest distance
non-circular sparse network to update the sub-ma-
trices d(Ni, Nx), LK=1, 2,---, Q-1.

Step 2. For T=1 and Q-1, let the nodes in Nt be the pivot
nodes and update d(Ny,Ng) and d(Ng,Np), L=1, Q-1,
Q, i.e., execute :

Divide the nodes in Nt into K sets Ny, N+, Nk.
A. For R=1 to K, do the following :
Let S :=Mg, S :=Ng and update d(S, S),
d( S,8) by;
d(S, S) :=min { d(S, S), d(S,S)Md(S, S) }
d( S.8) :=min { d( S,S), d( S,)EHd(S,S) },
where the notation F denotes subroutine for finding
all shortest distance by Taubourier[14].
Let S={N;UNg.}-Mz, S :=Ng and update d(S, S),
d( S.8), d('S, S) by;
d(S, S) :=min { d(S, S), d(S,Mr)Bd(Mz, S) }
d( S,S) :=min { d( S,S), d( S,Mp)Dd(Mg,S) }
d('S, S)y:=min { d( S, S), d( SMr)P
dMs, S) },
where the notation @ denotes subroutine for finding
all shortest distance by Hoffman and Winograd[9].
B. d(No,No) : =d'(No,No)
C. Let the nodes in N be the pivot nodes and d(N,Ng)
and d(Ng,Np), L=1, Q-1, i.e., execute :
Divide the nodes in Nq into K sets, M;, M,---, M.
For R=1 to K, do the following :

Let S :=Mg, S :=N;UNgq. and update d(S, S),
d( S,8) by;

d(S, S) :=min { d(S, S), d(S,S)Hd(S, S) }
d('S,8) :=min { d( S,S), d( S,S)M(S,S) }.
Let S=No-Mg, S :={N;UNg.,}, and update

(s, S), d( S,) by;
d(S, S) r=min { d(S, S), d(S;MR)BdMg, S) }
d( S,8) :=min { d( S,S), d( SMr)Pd(Mg,S) }.

D. For T=1 and Q-1, let the nodes in Nt be the pivot no-

des and d(N,Ng) and d(Ng,Np), L=2, 3,---, Q-2, i..,
execute :
Divide the nodes in Nq into K sets, M|, M,-+,Mk.
For R=1 to K, let S 1= Ng, S :=N,UN;U---U Noa
and update d(S, S), d( S,S) by;
d(S, S) :=min { d(S, S), d(S,MR)BdMg, S) }
d( S,8) :=min { d( S.S), d( S,Mp)Bd(Mg,$) }.

. Let the nodes in Ng be the pivot nodes and d(N(,N),
LK=2, 3,---, Q-1, i.e., execute :
Divide the nodes in Ng into K sets, M;,Mj,---,Mx.
For R=1 to K, let S :=Mg, S :=N;UN;U--UNg.
and update d( S, S) by;

d( S, S):=min { d( S, S), d( S,9)@d(S, S) }.

An illustration of the use of suggested algorithm 1 on a matrix
is given in Fig. 3.

Ni N. N; No N

Distance matrix

Ni No N3 Ns Ny

Step 1

Ny N2 N Ny Ng N, N; N; Ny N

Step 2A, T=1

Step 2A, T=Q—1
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Step 2B
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Step 2C

N N, N; N, NQ N, No Ny Nay NQ

Step 2D, T=1 Step 2D, T=Q-1

Ny N2 N; Ny NQ

Step 2E

* A set of pivot nodes

[ ] The empty sub-matrix

[7] The non-empty sub-matrix not currently updated

. The sub-matrix currently updated

—I A set of shortest distances that are related to the pivot no-
des in sub-iteration

<Fig. 3> An illustration of the use of Algorithm 1 for
finding all shortest distance in a doughnut
shaped sparse network

The number of sub-matrices updated by algorithm are as
follows :

7(Q-1)-6 key sub-matrices and (Q-1)2-3(Q-1)+2 non-key
sub-matrices in step 1, 10 sub-matrices in step 2.A., | sub-ma-
trix in step 2.B., 4 sub-matrices in step 2.E.. Therefore a total
of 2Q7+4Q-3 sub-matrices are updated by the algorithm.

Assuming there are M nodes in each sub-network, then in
the best case approximately 0.5M’-0.5M*” loops, 2M*” addi-
tion-subtractions, and M>-2M*
update a distance sub-matrix.

comparisons are necessary to

In the worst case, approximately 0.5M*-0.5M”

loops,
4M*”* addition-subtractions, and M* comparisons are necessary
to update a distance sub-matrix. Therefore Algorithm requires
in the best case approximately (2Q’-4Q-3)(0.5M-0.5M*?)loops,
p
(2Q*-4Q-3)2M*” addition-subtractions, and (2Q°-4Q-3) (M’-
2M5/2) comparisons are necessary to update a distance sub-ma-
trix, and in the worst case approximately (2Q*-4Q-3)(0.5M’-0.5M™*
loops, (2Q™-4Q-3)(4M) addition-subtractions, and (2Q*-4Q-3)(M’)
comparisons are necessary to update a distance sub-matrix.
When peripheral memory units are used to store data, algo-
rithm can be executed efficiently using approximately 4M* da-

ta storage locations in the CPU.

2.2 An arc elimination approach (Algorithm 2)

Based on an arc elimination approach described previously,
we can develop an algorithm for finding all shortest distances
in a doughnut shaped sparse
network as follows :

Step 1. Delete from the original distance matrix the distance
sub-matrices d(Ni,Ng) and d(Ng,Ni).

Step 2. Apply algorithm for finding shortest distance non-cir-
cular sparse network to update d(Ng,Ny), S,T=1,2

’...,Q‘
Step 3. A. Update d(N;,N;) for [EN; J&Ng, €N, JEN,,

by d(L)) = min { D)), D))},

where  D(J) is the current value and D(1,J)) is the

original arc distance which was deleted from the

distance matrix Step 1.

If all ﬁ(I,J)’s are greater than the corresponding D
(LJ)s, we will terminate the algorithm. In such a
case, the D(J)'s for LIE{NUN,U---UNg} are
the shortest distances of the network.

B. Let the nodes in N; be the pivot nodes and update
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d(N,Ng) and d(Ng,Np), L=1,2,---, Q, i.e., execute :
Divide the nodes in N,, into K sets N, Na, ---, N.
For R=1 to K, do the following :

Let S :=Mgp, S :=Ng and update d(S, S),

d( S.S) by;

d(S, S) :=min { d(S, S), d(S.S)Hd(S, S) }

d( S,8) :=min { d( S,9), d( S,S)EHI(S,S) }.

Let S={N;UNU--UNg.}-Mg, S :=Ng and
update d(S, S), d( S,8), d('S, S) by;

d(S, S) :=min { d(S, S), d(S;Mr)Bd(Mz, S) }
d( S,8) :=min { d( S,8), d( S,Mr)Dd(M¢,S) }
d('S, S):=min {d( S, S), d( SM)DdMg, S) .
C. Let the nodes in Nq be the pivot nodes and update
d(Ns,Ny), §,T=1,2,---, Q, i.e., execute :

Divide the nodes in Ng, into K sets Nj, Na,-++, Nk.
For R=1 to K, let S :=Mg, S:= {N;UN,U--U
No}-Mg and d(S,8) = d'(S,S), then update

d(S, S) :=min { d(S, S), d(S,S)Ad(S, S) }

d( S,8) :=min { d( S,8), d( S,S)A(S,S) }
d('S, S):=min { d( S, S), d( S,5)Dd(S, S) }.

Algorithm 2 is slightly less efficient than Algorithm 1. This
is because sub-matrices d(Ng, Ni) and d(Ni, Ng), L=2, 3,---,
Q-2, are updated three times in Algorithm 2, while they are
updated only twice in Algorithm 1.

And sub-matrices d(Ni,Nk), L,K=Q-1,Q, are updated four
times in Algorithm 2, while they are updated only three times
in Algorithm 1. An illustration of the use of Algorithm 2 on
a matrix is given in Fig4.

Ny N» Ny Ny Ng

Distance matrix
Ni N N3y Ng¢ No

Step 1

g
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Step 2

N N» N3 Ny NQ Ny Na» N3 Ny NQ

it

Step 3.B Step 3.A

Ny N N3 Ng NQ

Step 3.C

* A set of pivot nodes

[ ] The empty sub-matrix

["] The non-empty sub-matrix not currently updated

The sub-matrix currently updated

_I A set of shortest distances that are related to the pivot
nodes in sub-iteration

<Fig. 4> An illustration of the use of Algorithm for finding
all shortest distance in a doughnut shaped
sparse network

3. An algorithmic process of decom-
position algorithm for finding all shor-
test distances in a sparse network.

We will present an algorithmic process for a wheel shaped
sparse network which has more complicating shape than
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doughnut shaped network. It consists of a set of sub-networks,
Ni, Ny, -,
of modes in each sub-network, and also between the nodes in
sub-networks N{UN;UNg, N;UN3UNg, N3UNgUNq, -,
No.t UN; UNp.
by the graph in Fig.5.a and its distance matrix in Fig.5.e.

Ng, where arcs exist between all (or most) pairs

A sparse network of this type can be shown

b. Removal of Ny
and Ng

a. A wheel shaped
sparsed network

¢. Removal of some arc d. Removal of Ng and
sets arc set connecting N,

and N,

Ny N> N;

e. Distance matrix of wheel shaped
sparse network

<Fig. 5.> Graph of wheel shaped sparse network and its

distance matrix

All shortest distances in a wheel shaped sparse network can
be obtained in different ways. For example, we can use the
following approaches to find all the shortest distances in a
wheel shaped sparse network.

(1) Find all shortest distances by an all pair shortest path

algorithm.

(2) Find all shortest distance by removing two sub-net-
works from the original wheel shaped network such
that the resulting network becomes a non-circular
sparse network, that consists of fewer sub-networks.
then restoring the sub-networks one by one as the
shortest distance matrix is being updated.

(3) Find all shortest distance by removing sets of arcs con-
necting two neighboring sub-networks, such that the re-
sulting network becomes a non-circular sparse network
then restoring the arcs one by one as the shortest dis-
tance matrix is being updated.

(4) Find all shortest distance by using a combination of (2)
and (3).

4. Conclusion

The algorithm for doughnut shaped network can be ex-
tended to find all shortest distance in sparse networks other
than a doughnut shaped sparse network. For example, these
ideas can be used to find all shortest distances in different of
sparse networks as first degree circular sparse networks which
are a wheel shaped sparse network, and second degree sparse
network, or n-degree circular sparse network. An n-degree cir-
cular network is a circular sparse network which can be sim-
plified into a non-circular sparse network by removing a
sub-networks, or the arcs connected to the n sub-networks.
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