• Title/Summary/Keyword: network security

Search Result 6,015, Processing Time 0.037 seconds

Fusion of Blockchain-IoT network to improve supply chain traceability using Ethermint Smart chain: A Review

  • George, Geethu Mary;Jayashree, LS
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3694-3722
    • /
    • 2022
  • In today's globalized world, there is no transparency in exchanging data and information between producers and consumers. However, these tasks experience many challenges, such as administrative barriers, confidential data leakage, and extensive time delays. To overcome these challenges, we propose a decentralized, secured, and verified smart chain framework using Ethereum Smart Contract which employs Inter Planetary File Systems (IPFS) and MongoDB as storage systems to automate the process and exchange information into blocks using the Tendermint algorithm. The proposed work promotes complete traceability of the product, ensures data integrity and transparency in addition to providing security to their personal information using the Lelantos mode of shipping. The Tendermint algorithm helps to speed up the process of validating and authenticating the transaction quickly. More so in this time of pandemic, it is easier to meet the needs of customers through the Ethermint Smart Chain, which increases customer satisfaction, thus boosting their confidence. Moreover, Smart contracts help to exploit more international transaction services and provide an instant block time finality of around 5 sec using Ethermint. The paper concludes with a description of product storage and distribution adopting the Ethermint technique. The proposed system was executed based on the Ethereum-Tendermint Smart chain. Experiments were conducted on variable block sizes and the number of transactions. The experimental results indicate that the proposed system seems to perform better than existing blockchain-based systems. Two configuration files were used, the first one was to describe the storage part, including its topology. The second one was a modified file to include the test rounds that Caliper should execute, including the running time and the workload content. Our findings indicate this is a promising technology for food supply chain storage and distribution.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

A Blockchain-based User-centric Role Based Access Control Mechanism (블록체인 기반의 사용자 중심 역할기반 접근제어 기법 연구)

  • Lee, YongJoo;Woo, SungHee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1060-1070
    • /
    • 2022
  • With the development of information technology, the size of the system has become larger and diversified, and the existing role-based access control has faced limitations. Blockchain technology is being used in various fields by presenting new solutions to existing security vulnerabilities. This paper suggests efficient role-based access control in a blockchain where the required gas and processing time vary depending on the access frequency and capacity of the storage. The proposed method redefines the role of reusable units, introduces a hierarchical structure that can efficiently reflect dynamic states to enhance efficiency and scalability, and includes user-centered authentication functions to enable cryptocurrency linkage. The proposed model was theoretically verified using Markov chain, implemented in Ethereum private network, and compared experiments on representative functions were conducted to verify the time and gas efficiency required for user addition and transaction registration. Based on this in the future, structural expansion and experiments are required in consideration of exception situations.

Image Steganography for Hiding Hangul Messages in Hybrid Technique using Variable ShiftRows (가변 ShiftRows를 이용한 하이브리드 기법에서 한글 메시지 은닉을 위한 이미지 스테가노그래피)

  • Ji, Seon-su
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 2022
  • Information plays an important role in modern society. Most of the information is processed and moved in the digital space. In cyberspace, confidential communication based on resistance and security is fundamental. It is essential to protect the information sent and received over the network. However, information may be leaked and forged by unauthorized users. The effectiveness of the existing protection system decreases as an innovative technique is applied to identify the communication contents by a third party. Steganography is a technique for inserting secret information into a specific area of a medium. Stegganography and steganalysis techniques are at odds with each other. A new and sophisticatedly implemented system is needed to cope with the advanced steganalysis. To enhance step-by-step diffusion and irregularity, I propose a hybrid implementation technique of image steganography for Hangul messages based on layered encryption and variable ShiftRows. PSNR was calculated to measure the proposed steganography efficiency and performance. Compared to the basic LSB technique, it was shown that the diffusion and randomness can be increased even though the PSNR decreased by 1.45%.

A Quantum Resistant Lattice-based Blind Signature Scheme for Blockchain (블록체인을 위한 양자 내성의 격자 기반 블라인드 서명 기법)

  • Hakjun Lee
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.76-82
    • /
    • 2023
  • In the 4th industrial revolution, the blockchain that distributes and manages data through a P2P network is used as a new decentralized networking paradigm in various fields such as manufacturing, culture, and public service. However, with the advent of quantum computers, quantum algorithms that are able to break existing cryptosystems such as hash function, symmetric key, and public key cryptography have been introduced. Currently, because most major blockchain systems use an elliptic curve cryptography to generate signatures for transactions, they are insecure against the quantum adversary. For this reason, the research on the quantum-resistant blockchain that utilizes lattice-based cryptography for transaction signatures is needed. Therefore, in this paper, we propose a blind signature scheme for the blockchain in which the contents of the signature can be verified later, as well as signing by hiding the contents to be signed using lattice-based cryptography with the property of quantum resistance. In addition, we prove the security of the proposed scheme using a random oracle model.

Analysis of Latency and Computation Cost for AES-based Whitebox Cryptography Technique (AES 기반 화이트박스 암호 기법의 지연 시간과 연산량 분석)

  • Lee, Jin-min;Kim, So-yeon;Lee, Il-Gu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.115-117
    • /
    • 2022
  • Whitebox encryption technique is a method of preventing exposure of encryption keys by mixing encryption key information with a software-based encryption algorithm. Whitebox encryption technique is attracting attention as a technology that replaces conventional hardware-based security encryption techniques by making it difficult to infer confidential data and keys by accessing memory with unauthorized reverse engineering analysis. However, in the encryption and decryption process, a large lookup table is used to hide computational results and encryption keys, resulting in a problem of slow encryption and increased memory size. In particular, it is difficult to apply whitebox cryptography to low-cost, low-power, and light-weight Internet of Things products due to limited memory space and battery capacity. In addition, in a network environment that requires real-time service support, the response delay time increases due to the encryption/decryption speed of the whitebox encryption, resulting in deterioration of communication efficiency. Therefore, in this paper, we analyze whether the AES-based whitebox(WBC-AES) proposed by S.Chow can satisfy the speed and memory requirements based on the experimental results.

  • PDF

5G based Smart Railway Communication Technology Trends (5G 기반 스마트 철도 통신 기술 동향)

  • Kim, Young-dong;Kim, Jongki;Lee, Sanghak;Park, Eunkyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.478-480
    • /
    • 2022
  • Smart Railway as a next generation railway technology is expected to have rapid evolution with developments of information and communications tehchology. Especially, smart railway will be progressed more evolved transportation means for railway operation and costomer service based with spread of commercial 5G communication. So, it is very important to investigate and analyze trends of smart railway related tehcnology of 5G mobile communication for samrt railway infra structure, server technolgy for AI, big data, deep learning, information security technology, sensor and IoT. In this paper, 5G based communicaion technology and application techology related smart railway is described and trends of new techlogy on this communication tehnology is investigated. The results of this study can be used for smart railway study and implementation, research and development for smart railway communicaion technology, etc.

  • PDF

A Key distribution Scheme for Information Security at Wireless Sensor Networks (무선 센서 네트워크에서 정보 보호를 위한 키 분배 기법)

  • Kim, Hoi-Bok;Shin, Jung-Hoon;Kim, Hyoung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.51-57
    • /
    • 2009
  • Wireless sensor networks consist of numerous sensor nodes that have inexpensive and limited resources. Generally, most of the sensors are assigned to the hazardous or uncontrollable environments. If the sensor nodes are randomly assigned to the wide target area, it is very hard to see the accurate locations of sensor nodes. Therefore, this study provides an efficient key distribution scheme to solve these problems. Based on the provided scheme, the study enabled the closely neighboring nodes to exchange information with each other after securing safe links by using the pre-distributed keys. At the same time, the provided scheme could increase the probability of multiparty key detection among nodes by using the location information of sensor node. Lastly, the study intended to show the superiority of the limitation method through a performance test.

Design and Implement a Forgery-safe Blockchain-based Academic Credential Verification System (위변조에 안전한 블록체인 기반 학력 검증 시스템 설계 및 구현)

  • Jung-oh Park
    • Journal of Industrial Convergence
    • /
    • v.21 no.7
    • /
    • pp.41-49
    • /
    • 2023
  • In recent years, various educational institutions have used online certificate services to verify academic achievement related to graduation and grades. However, the certificate of the existing system has limitations in verifying and tracking whether it is true or not and detailed academic background. In this regard, cases of forgery/falsification of online/offline certificates continue to occur. This study proposes a blockchain-based verification method that is safe from forgery and alteration, focusing on university institutions. Necessary information such as detailed class categories for each department, attendance, and detailed grades was collected/analyzed to create a linkage relationship through blockchain. In addition, the system/network environment required for blockchain sharing was considered, and it was implemented as an extension module in the form of an independent web application. As a result of the block chain verification, it was proved that the safe trust verification of educational information and the relationship between detailed information can be traced. This study aims to contribute to the improvement of academic credential verification services and information security for Korean educational institutions in the future.

Device RDoS Attack Determination and Response System Design (디바이스의 DDoS 공격 여부 판단 및 대응 시스템 설계)

  • Kim, Hyo-jong;Choi, Su-young;Kim, Min-sung;Shin, Seung-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.108-110
    • /
    • 2021
  • Since 2015, attacks using the IoT protocol have been continuously reported. Among various IoT protocols, attackers attempt DDoS attacks using SSDP(Simple Service Discovery Protocol), and as statistics of cyber shelters, Korea has about 1 million open SSDP servers. Vulnerable SSDP servers connected to the Internet can generate more than 50Gb of traffic and the risk of attack increases gradually. Until recently, distributed denial of service attacks and distributed reflective denial of service attacks have been a security issue. Accordingly, the purpose of this study is to analyze the request packet of the existing SSDP protocol to identify an amplification attack and to avoid a response when an amplification attack is suspected, thereby preventing network load due to the occurrence of a large number of response packets due to the role of traffic reflection amplification.

  • PDF